scholarly journals Effect of plasma channel non-uniformity on resonant third harmonic generation

2013 ◽  
Vol 31 (3) ◽  
pp. 531-537 ◽  
Author(s):  
Anuraj Panwar ◽  
Chang-Mo Ryu ◽  
Ashok Kumar

AbstractWe study the generation of resonant third harmonic laser radiation in a density non-uniform rippled plasma channel. An introduction of plasma channel non-uniformity strongly enhances the self-focusing and compression of main laser pulse at lower powers. In a deeper plasma channel, self-focusing is less sensitive to laser amplitude variation but increases compression. Plasma density ripple ‘nq’ leading to resonant third harmonic generation when kq = 4ω2p/3meω0cγ0, where ‘ω’p is electron plasma frequency, ‘ω0’ is laser frequency, and ‘γ0’ is the electron Lorentz factor. Third harmonic is produced through the beating of ponderomotive force induced second harmonic density oscillations and the oscillatory velocity of electrons at main laser frequency. The self-focusing and compression of the fundamental pulse periodically enhances the intensity of the third-harmonic pulse at lower powers of main laser. In a deeper plasma channel, the third harmonic power is less effective by self-focusing and the compression of main laser, and increase with main laser pulse power.

2013 ◽  
Vol 31 (1) ◽  
pp. 163-169 ◽  
Author(s):  
K.K. Magesh Kumar ◽  
V.K. Tripathi

AbstractThe third harmonic generation of a self organized nonlinear laser Eigen mode of a two-dimensional plasma channel with complete electron evacuation from the inner region is investigated. The nonlinearities arise through the ponderomotive force and relativistic mass variations, while the ions are taken to be immobile. The second harmonic ponderomotive force produces electron density oscillations that beat with the oscillatory velocity due to the laser Eigen mode to create a nonlinear current, driving the third harmonic. As a0 increases up to the threshold value amin, at which complete electron evacuation begins in the inner region, the third harmonic amplitude rises rapidly. Above the threshold, as a0 increases, the width of the inner region where there is no third harmonic current, increases and third harmonic amplitude rises less rapidly. The conversion efficiency is found to be in reasonable agreement with the experimental results.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Hendradi Hardhienata ◽  
Tony Ibnu Sumaryada ◽  
Benedikt Pesendorfer ◽  
Adalberto Alejo-Molina

In this work, we describe the third- and fourth-rank tensors of body- and face-centered cubic systems and derive the s- and p-polarized SHG far field using the simplified bond-hyperpolarizability model. We also briefly discuss bulk nonlinear sources in such structures: quadrupole contribution, spatial dispersion, electric-field second-harmonic generation, and third-harmonic generation, deriving the corresponding fourth rank tensor. We show that all the third- and fourth-rank tensorial elements require only one independent fitting parameter.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3194
Author(s):  
Adrian Petris ◽  
Petronela Gheorghe ◽  
Tudor Braniste ◽  
Ion Tiginyanu

The ultrafast third-order optical nonlinearity of c-plane GaN crystal, excited by ultrashort (fs) high-repetition-rate laser pulses at 1550 nm, wavelength important for optical communications, is investigated for the first time by optical third-harmonic generation in non-phase-matching conditions. As the thermo-optic effect that can arise in the sample by cumulative thermal effects induced by high-repetition-rate laser pulses cannot be responsible for the third-harmonic generation, the ultrafast nonlinear optical effect of solely electronic origin is the only one involved in this process. The third-order nonlinear optical susceptibility of GaN crystal responsible for the third-harmonic generation process, an important indicative parameter for the potential use of this material in ultrafast photonic functionalities, is determined.


2009 ◽  
Vol 17 (5) ◽  
pp. 3190 ◽  
Author(s):  
S. Suntsov ◽  
D. Abdollahpour ◽  
D. G. Papazoglou ◽  
S. Tzortzakis

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Marwan Abdou Ahmed ◽  
Christoph Roecker ◽  
André Loescher ◽  
Florian Bienert ◽  
Daniel Holder ◽  
...  

Abstract Thin-disk multipass amplifiers represent one of the most powerful approaches to scale the average and peak powers of ultrafast laser systems. The present paper presents the amplification of picosecond and femtosecond pulses to average powers exceeding 2 and 1 kW, respectively. Second-harmonic generation in lithium-triborate crystals with powers higher than 1.4 kW and 400 W at a wavelength of 515 nm with picosecond and femtosecond pulse durations, respectively, are also reported. Furthermore, third-harmonic generation was demonstrated with output powers exceeding 250 W at a wavelength of 343 nm. Finally, processing of silicon, metals, and polycrystalline diamond with fs pulses at an average power of 1 kW is presented to demonstrate removal rates that are improved by orders of magnitude as compared to state-of-the-art techniques.


Author(s):  
D.V. Mokrousova ◽  
G.E. Rizaev ◽  
A.V. Shalova ◽  
D.E. Shipilo ◽  
N.A. Panov ◽  
...  

2013 ◽  
Vol 37 ◽  
pp. 368-374 ◽  
Author(s):  
Hirdesh SHARMA ◽  
Harsha JALOREE ◽  
Jetendra PARASHAR

2013 ◽  
Vol 760-762 ◽  
pp. 392-396
Author(s):  
You Bin Yu

Third-harmonic generation in a special asymmetric quantum well is investigated. The third-harmonic generation coefficient is carried out by applying compact-density-matrix method. The numerical results are presented for a GaAs/AlGaAs asymmetric quantum well. The very large third-harmonic generation coefficient is obtained in this quantum well. Moreover, the third-harmonic generation coefficient dependents on the quantum well parameters are investigated, respectively.


Sign in / Sign up

Export Citation Format

Share Document