scholarly journals Acceleration of electrons by high intensity laser radiation in a magnetic field

2014 ◽  
Vol 32 (2) ◽  
pp. 205-210 ◽  
Author(s):  
Robert Melikian

AbstractWe consider the acceleration of electrons in vacuum by means of the circularly-polirized electromagnetic wave, propagating along a magnetic field. We show that the electron energy growth, when using ultra-short and ultra-intense laser pulses (1 ps, 1018 W/cm2, CO2 laser) in the presence of a magnetic field, may reach up to the value 2,1 GeV. The growth of the electron energy is shown to increase proportionally with the increase of the laser intensity and the initial energy of the electron. We find that for some direction of polarization of the wave, the acceleration of electrons does not depend on the initial phase of the electromagnetic wave. We estimate the laser intensity, necessary for the electron acceleration. In addition, we find the formation length of photon absorption by electrons, due to which one may choose the required region of the interaction of the electrons with the electromagnetic wave and magnetic field. We also show that as a result of acceleration of electrons in the vacuum by laser radiation in a magnetic field one may obtain electron beam with small energy spread of the order δε/ε ≤ 10−2.

2012 ◽  
Vol 78 (4) ◽  
pp. 461-468 ◽  
Author(s):  
WEI-MIN WANG ◽  
ZHENG-MING SHENG ◽  
SHIGEO KAWATA ◽  
CHUN-YANG ZHENG ◽  
YU-TONG LI ◽  
...  

AbstractEnergetic electron beam generation from a thin foil target by the ponderomotive force of an ultra-intense circularly polarized laser pulse is investigated. Two-dimensional particle-in-cell (PIC) simulations show that laser pulses with intensity of 1022–1023 Wcm−2 generate about 1–10 GeV electron beams, in agreement with the prediction of one-dimensional theory. When the laser intensity is at 1024–1025 Wcm−2, the beam energy obtained from PIC simulations is lower than the values predicted by the theory. The radiation damping effect is considered, which is found to become important for the laser intensity higher than 1025 Wcm−2. The effect of laser focus positions is also discussed.


2016 ◽  
Vol 35 (1) ◽  
pp. 64-71 ◽  
Author(s):  
O.B. Shiryaev

AbstractThe energy spectra of a sparse ensemble of electrons scattered by relativistically intense laser pulses are studied numerically by solving the relativistic Newton equations with the Lorentz force generated by an electromagnetic envelope in vacuum. The expressions for the envelope describe focused optical fields, include significant short-pulse corrections, and afford the representation of laser radiation with various types of transverse distributions of amplitude. The dependence of the character of the electron energy spectra on the type of the transverse distribution of laser amplitude is explored. For Gaussian pulses, the electron energy spectra within specific angular ranges tend to either include a relativistic maximum while being localized around it or to have the shapes of evanescent distributions dominated by the cold component. Conversely, the energy spectra of electrons ejected into certain angular ranges by laser pulses having first-order Laguerre profiles combine pronounced cold components and structured strongly relativistic features. The presumed laser pulse transverse structure and the shapes of the calculated electron energy spectra for first-order Laguerre amplitude distributions are shown to match, qualitatively, those reported in a recent experimental study by Kalashnikov et al. in 2015, which revealed the electron energy spectra spanning both the sub-relativistic and the markedly relativistic energy domains.


2004 ◽  
Vol 22 (2) ◽  
pp. 137-145 ◽  
Author(s):  
F. GRESCHIK ◽  
H.-J. KULL

Collective absorption of intense laser pulses by atomic clusters is studied by PIC simulations. The cluster is modeled in two-dimensional calculations as a cylindrical plasma column with a diameter of D = 6.4 nm and an initial electron density of ne0 = 1023 cm−3. The frequency and intensity dependence of absorption is discussed. It is found that nonresonant absorption by electron emission increases as a power law with the laser intensity. The absorbed energy per electron reaches a maximum of about Wmax = mωp2D2 (ωp: plasma frequency, m: electron mass) at the intensity where ionization saturates.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Elmina Kabouraki ◽  
Vasileia Melissinaki ◽  
Amit Yadav ◽  
Andrius Melninkaitis ◽  
Konstantina Tourlouki ◽  
...  

Abstract Optics manufacturing technology is predicted to play a major role in the future production of integrated photonic circuits. One of the major drawbacks in the realization of photonic circuits is the damage of optical materials by intense laser pulses. Here, we report on the preparation of a series of organic–inorganic hybrid photoresists that exhibit enhanced laser-induced damage threshold. These photoresists showed to be candidates for the fabrication of micro-optical elements (MOEs) using three-dimensional multiphoton lithography. Moreover, they demonstrate pattern ability by nanoimprint lithography, making them suitable for future mass production of MOEs.


2012 ◽  
Vol 137 (4) ◽  
pp. 044112 ◽  
Author(s):  
Mohsen Vafaee ◽  
Firoozeh Sami ◽  
Babak Shokri ◽  
Behnaz Buzari ◽  
Hassan Sabzyan

Sign in / Sign up

Export Citation Format

Share Document