scholarly journals Electron plasma wave excitation by beating of two q-Gaussian laser beams in collisionless plasma

2016 ◽  
Vol 34 (2) ◽  
pp. 230-241 ◽  
Author(s):  
Arvinder Singh ◽  
Naveen Gupta

AbstractThis paper presents a scheme for excitation of an electron-plasma wave (EPW) by beating two q-Gaussian laser beams in an underdense plasma where ponderomotive nonlinearity is operative. Starting from nonlinear Schrödinger-type wave equation in Wentzel–Kramers–Brillouin (WKB) approximation, the coupled differential equations governing the evolution of spot size of laser beams with distance of propagation have been derived. The ponderomotive nonlinearity depends not only on the intensity of first laser beam, but also on that of second laser beam. Therefore, the dynamics of one laser beam affects that of other and hence, cross-focusing of the two laser beams takes place. Due to nonuniform intensity distribution along the wavefronts of the laser beams, the background electron concentration is modified. The amplitude of EPW, which depends on the background electron concentration, is thus nonlinearly coupled with the laser beams. The effects of ponderomotive nonlinearity and cross-focusing of the laser beams on excitation of EPW have been incorporated. Numerical simulations have been carried out to investigate the effect of laser and plasma parameters on cross-focusing of the two laser beams and further its effect on EPW excitation.

2015 ◽  
Vol 33 (4) ◽  
pp. 621-632 ◽  
Author(s):  
Arvinder Singh ◽  
Naveen Gupta

AbstractThis paper presents a scheme for beat wave excitation of an electron plasma wave (EPW) by cross-focusing of two intense cosh-Gaussian (ChG) laser beams in an under dense collisional plasma. The plasma wave is generated on account of beating of two ChG laser beams of frequencies ω1 and ω2. Starting from Maxwell's equations, coupled differential equations governing the evolution of spot size of laser beams with distance of propagation have been derived by using Moment theory approach in Wentzel–Kramers–Brillouin approximation. The collisional nonlinearity depends not only on the intensity of first laser beam, but also on that of second laser beam. Therefore, dynamics of first laser beam affects that of other and hence cross-focusing of the two laser beams takes place. Numerical simulations have been carried out to investigate the effect of laser as well as plasma parameters on cross-focusing of laser beams and further its effect on power of excited EPW. It has been found that decentered parameters of the two laser beams have significant effect on power of EPW.


2012 ◽  
Vol 67 (1-2) ◽  
pp. 10-14
Author(s):  
Prerana Sharma

This paper presents the cross focusing of two high power lasers by taking off-axial contributions of the laser beams in a collisionless plasma. Due to relativistic and ponderomotive nonlinearities the two laser beams affect the dynamics of each other and cross focusing takes place. The expressions for the laser beam intensities by using the eikonal method are derived. The contributions of the r2 and r4 terms are incorporated. By expanding the eikonal and the other relevant quantities up to the fourth power of r, the solution of the pump laser beam is obtained within the extended paraxial ray approximation. Filamentary structures of the laser beams are observed due to the relativistic and the ponderomotive nonlinearity. The focusing of the laser beams is shown to become fast in the extended paraxial region. Using the laser beam and the plasma parameters, appropriate for beat wave processes, the filaments of the laser beams are studied and the relevance of these results to beat wave processes is pointed out.


2021 ◽  
Author(s):  
Gunjan Purohit ◽  
Bineet Gaur ◽  
Amita Raizada ◽  
Pradeep Kothiyal

Abstract Excitation of electron plasma wave by an intense short laser pulse is relevant to electron acceleration process in laser plasma interactions. In this work, the self-focusing of an intense cosh-Gaussian laser beam in collissionless plasma have been studied in the non-paraxial region with relativistic and ponderomotive nonlinearities. Further, the effect of self-focusing of the cosh-Gaussian laser beam on the excitation of electron plasma wave and on subsequent electron acceleration has been investigated. Analytical expressions for the beam width parameter/intensity of cosh-Gaussian laser beam and the electron plasma wave have been established and solved numerically. The energy of the accelerated electrons has also been obtained. The strong self-focusing of the cosh-Gaussian laser beam in plasmas stimulates a large amplitude electron plasma wave, which further accelerates the electrons. The well-established laser and plasma parameters have been used in numerical computation. The results have been compared with paraxial ray approximation, Gaussian profile of laser beam and only with the relativistic nonlinearity. Numerical results suggest that the focusing of the cosh-Gaussian laser beam, the amplitude of electron plasma wave, and energy gain by electrons increases in non-paraxial region, when relativistic and ponderomotive nonlinearities are simultaneously operative. In addition, it has also been observed that the electron plasma wave is driven more efficiently by a cosh-Gaussian laser beam that accelerates plasma electrons to higher energies.


2007 ◽  
Vol 73 (1) ◽  
pp. 117-130 ◽  
Author(s):  
P. K. CHAUHAN ◽  
S. T. MAHMOUD ◽  
R. P. SHARMA ◽  
H. D. PANDEY

Abstract.This paper presents the effect of ripple on the plasma wave excitation process and acceleration of electrons in a laser produced plasma. The plasma wave is generated by the beating of two coaxial lasers of frequencies ω1 and ω2, such that ω1-ω2≅ωp. One of the main laser beams also has intensity spikes. The nonlinearity due to the relativistic mass variation depends not only on the intensity of one laser beam but also on the second laser beam. Therefore the behavior of the first laser beam affects the second laser beam, hence cross-focusing takes place. Owing to the interaction of ripple and the main laser beams, the ripple grows inside the plasma. The behavior of the ripple in the plasma affects the excitation of the electron plasma wave as well as the electron acceleration. The amplitude of the electron plasma wave and the electron energy are calculated, in the presence of ripple.


2018 ◽  
Vol 36 (1) ◽  
pp. 60-68 ◽  
Author(s):  
Bineet Gaur ◽  
Priyanka Rawat ◽  
Gunjan Purohit

AbstractThe effect of two intense cross-focused cosh-Gaussian laser (CGL) beams on the generation of electron plasma wave (EPW) and particle acceleration in collisionless plasma has been investigated under the relativistic–ponderomotive regime. Due to mutual interaction of two laser beams, cross-focusing takes place in plasma. The EPW is generated by the beating of two cross-focused CGL beams of frequencies ω1 and ω2. An analytical expression for the beamwidth of laser beams and EPW as well as the power of the generated EPW has been evaluated using Wentzel–Kramers–Brillouin and paraxial approximations. The energy of the accelerated electrons by the beat-wave process has also been calculated. Numerical simulations have been carried out to investigate the effect of typical laser plasma parameters on the power of excited EPW and acceleration of electrons. The results are compared with only relativistic nonlinearity and the Gaussian profile of laser beams. It is observed that CGL beams focused earlier than Gaussian beams, which significantly affected the dynamics of plasma wave excitation and particle acceleration. Numerical results indicate that there is a remarkable change in the power of generated EPW and electron acceleration in the relativistic–ponderomotive case in comparison with only relativistic case.


2016 ◽  
Vol 34 (4) ◽  
pp. 621-630 ◽  
Author(s):  
B. Gaur ◽  
P. Rawat ◽  
G. Purohit

AbstractThis work presents an investigation of the self-focusing of a high-power laser beam having cosh Gaussian intensity profile in a collissionless plasma under weak relativistic-ponderomotove (RP) and only relativistic regimes and its effect on the excitation of electron plasma wave (EPW), and particle acceleration process. Nonlinear differential equations have been set up for the beam width and intensity of cosh Gaussian laser beam (CGLB) and EPW using the Wentzel-Kramers-Brillouin and paraxial-ray approximations as well as fluid equations. The numerical results are presented for different values of decentered parameter ‘b’ and intensity parameter ‘a’ of CGLB. Strong self-focusing is observed in RP regime as compared with only relativistic nonlinearity. Numerical analysis shows that these parameters play crucial role on the self-focusing of the CGLB and the excitation of EPW. It is also found that the intensity/amplitude of EPW increases with b and a. Further, nonlinear coupling between the CGLB and EPW leads to the acceleration of electrons. The intensity of EPW and energy gain by electrons is significantly affected by including the ponderomotive nonlinearity. The energy of the accelerated electrons is increased by increasing the value of ‘b’. The results are presented for typical laser and plasma parameters.


2016 ◽  
Vol 82 (1) ◽  
Author(s):  
Hehe Li ◽  
Xinzhong Li ◽  
Jingge Wang

In this paper, an Airy-like electron plasma wave is investigated in an unmagnetized collisionless plasma consisting of inertial electrons and static ions. Just like the optical Airy beam, the Airy-like electron plasma wave also has two interesting propagation characteristics: it has transverse acceleration and is diffraction-free, which display that the Airy-like electron plasma wave propagates along a curved trajectory and retains the basic structure for longer distances in the propagation direction, respectively. We give a numerical simulation for the electrostatic potential of the Airy-like electron plasma wave and show that, with the increase of the propagation distance, the electrostatic potential decreases in the propagation direction but increases in the transverse direction.


Sign in / Sign up

Export Citation Format

Share Document