A geometric approach for singularity analysis of 3-DOF planar parallel manipulators using Grassmann–Cayley algebra

Robotica ◽  
2015 ◽  
Vol 35 (3) ◽  
pp. 511-520 ◽  
Author(s):  
Kefei Wen ◽  
TaeWon Seo ◽  
Jeh Won Lee

SUMMARYSingular configurations of parallel manipulators (PMs) are special poses in which the manipulators cannot maintain their inherent infinite rigidity. These configurations are very important because they prevent the manipulator from being controlled properly, or the manipulator could be damaged. A geometric approach is introduced to identify singular conditions of planar parallel manipulators (PPMs) in this paper. The approach is based on screw theory, Grassmann–Cayley Algebra (GCA), and the static Jacobian matrix. The static Jacobian can be obtained more easily than the kinematic ones in PPMs. The Jacobian is expressed and analyzed by the join and meet operations of GCA. The singular configurations can be divided into three classes. This approach is applied to ten types of common PPMs consisting of three identical legs with one actuated joint and two passive joints.

2014 ◽  
Vol 532 ◽  
pp. 378-381 ◽  
Author(s):  
Ke Fei Wen ◽  
Jeh Won Lee

The wrench Jacobian matrix plays an important role in statics and singularity analysis of planar parallel manipulators (PPMs). It is easy to obtain this matrix based on plücker coordinate method. In this paper, a new approach is proposed to the analysis of the forward and inverse wrench Jacobian matrix used by Grassmann-Cayley algebra (GCA). A symbolic formula for the inverse statics and a coordinate free formula for the singularity analysis are obtained based on this Jacobian. As an example, this approach is implemented for the 3-RPR PPMs.


Robotica ◽  
2012 ◽  
Vol 30 (7) ◽  
pp. 1109-1118 ◽  
Author(s):  
Semaan Amine ◽  
Stéphane Caro ◽  
Philippe Wenger ◽  
Daniel Kanaan

SUMMARYThis paper extends a recently proposed singularity analysis method to lower-mobility parallel manipulators having an articulated nacelle. Using screw theory, a twist graph is introduced in order to simplify the constraint analysis of such manipulators. Then, a wrench graph is obtained in order to represent some points at infinity on the Plücker lines of the Jacobian matrix. Using Grassmann–Cayley algebra, the rank deficiency of the Jacobian matrix amounts to the vanishing condition of the superbracket. Accordingly, the parallel singularities are expressed in three different forms involving superbrackets, meet and join operators, and vector cross and dot products, respectively. The approach is explained through the singularity analysis of the H4 robot. All the parallel singularity conditions of this robot are enumerated and the motions associated with these singularities are characterized.


Author(s):  
Semaan Amine ◽  
Mehdi Tale Masouleh ◽  
Ste´phane Caro ◽  
Philippe Wenger ◽  
Cle´ment Gosselin

This paper deals with the singularity analysis of parallel manipulators with identical limb structures performing Scho¨nflies motions, namely, three independent translations and one rotation about an axis of fixed direction. The study is developed through the singularity analysis of the 4-RUU parallel manipulator. The 6 × 6 Jacobian matrix of such manipulators contains two lines at infinity, namely, two constraint moments, among its six Plu¨cker lines. The Grassmann-Cayley Algebra is used to obtain geometric singularity conditions. However, due to the presence of lines at infinity, the rank deficiency of the Jacobian matrix for the singularity conditions is not easy to grasp. Therefore, a wrench graph representation for some singularity conditions emphasizes the linear dependence of the Plu¨cker lines of the Jacobian matrix and highlights the correspondence between Grassmann-Cayley algebra and Grassmann geometry.


2011 ◽  
Vol 35 (4) ◽  
pp. 515-528 ◽  
Author(s):  
Semaan Amine ◽  
Mehdi Tale Masouleh ◽  
Stéphane Caro ◽  
Philippe Wenger ◽  
Clément Gosselin

This paper deals with the singularity analysis of four degrees of freedom parallel manipulators with identical limb structures performing Schönflies motions, namely, three independent translations and one rotation about an axis of fixed direction. The 6 × 6 Jacobian matrix of such manipulators contains two lines at infinity among its six Plücker vectors. Some points at infinity are thus introduced to formulate the superbracket of Grassmann-Cayley algebra, which corresponds to the determinant of the Jacobian matrix. By exploring this superbracket, all the singularity conditions of such manipulators can be enumerated. The study is illustrated through the singularity analysis of the 4-RUU parallel manipulator.


Author(s):  
Hee-Byoung Choi ◽  
Atsushi Konno ◽  
Masaru Uchiyama

The closed-loop structure of a parallel robot results in complex kinematic singularities in the workspace. Singularity analysis become important in design, motion, planning, and control of parallel robot. The traditional method to determine a singular configurations is to find the determinant of the Jacobian matrix. However, the Jacobian matrix of a parallel manipulator is complex in general, and thus it is not easy to find the determinant of the Jacobian matrix. In this paper, we focus on the singularity analysis of a novel 4-DOFs parallel robot H4 based on screw theory. Two types singularities, i.e., the forward and inverse singularities, have been identified.


2012 ◽  
Vol 4 (1) ◽  
Author(s):  
Semaan Amine ◽  
Mehdi Tale Masouleh ◽  
Stéphane Caro ◽  
Philippe Wenger ◽  
Clément Gosselin

This paper deals with the singularity analysis of parallel manipulators with identical limb structures performing Schönflies motions, namely, three independent translations and one rotation about an axis of fixed direction (3T1R). Eleven architectures obtained from a recent type synthesis of such manipulators are analyzed. The constraint analysis shows that these architectures are all overconstrained and share some common properties between the actuation and the constraint wrenches. The singularities of such manipulators are examined through the singularity analysis of the 4-RUU parallel manipulator. A wrench graph representing the constraint wrenches and the actuation forces of the manipulator is introduced to formulate its superbracket. Grassmann–Cayley Algebra is used to obtain geometric singularity conditions. Based on the concept of wrench graph, Grassmann geometry is used to show the rank deficiency of the Jacobian matrix for the singularity conditions. Finally, this paper shows the general aspect of the obtained singularity conditions and their validity for 3T1R parallel manipulators with identical limb structures.


1970 ◽  
Vol 41 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Soheil Zarkandi

Finding Singular configurations (singularities) is one of the mandatory steps during the design and control of mechanisms. Because, in these configurations, the instantaneous kinematics is locally undetermined that causes serious problems both to static behavior and to motion control of the mechanism. This paper addresses the problem of determining singularities of a 3-PRRR kinematically redundant planar parallel manipulator by use of an analytic technique. The technique leads to an input –output relationship that can be used to find all types of singularities occurring in this type of manipulators.Key Words: Planar parallel manipulators; Redundant manipulators; Singularity analysis; Jacobian matrices.DOI: 10.3329/jme.v41i1.5356Journal of Mechanical Engineering, Vol. ME 41, No. 1, June 2010 1-6


Author(s):  
Semaan Amine ◽  
Daniel Kanaan ◽  
Ste´phane Caro ◽  
Philippe Wenger

This paper presents a general approach to analyze the singularities of lower-mobility parallel manipulators with parallelogram joints. Using screw theory, the concept of twist graph is introduced and the twist graphs of two types of parallelogram joints are established in order to simplify the constraint analysis of the manipulators under study. Using Grassmann-Cayley Algebra, the geometric conditions associated with the dependency of six Plu¨cker vectors of finite and infinite lines in the 3-dimensional projective space are reformulated in the superbracket in order to derive the geometric conditions for parallel singularities. The methodology is applied to three lower-mobility parallel manipulators with parallelogram joints: the Delta-linear robot, the Orthoglide robot and the H4 robot. The geometric interpretations of the singularities of these robots are given.


Sign in / Sign up

Export Citation Format

Share Document