Modeling and control of biped robot dynamics

Robotica ◽  
1999 ◽  
Vol 17 (4) ◽  
pp. 413-426 ◽  
Author(s):  
S. Caux ◽  
R. Zapata

This paper addresses the problem of modeling biped dynamics and the use of such models for the control of walking, running and jumping robots. We describe two approaches to dynamic modeling: the basic Lagrange approach and the non-regular dynamic approach. The new non-regular dynamic approach takes into account discontinuities due to rigid contact between punctual feet and the ground without computing the exact impact time. The contact is close to the physical situation given by non-linear laws (impenetrability, non-smooth contact and real friction cone). Contact dynamics can be well managed with an accurate dynamic model that respects energy consistency during all the phases encountered during a step (0, 1 or 2 contacts). With this model, we can first study the equilibrum of a biped standing on one foot by a linearisation method. In the second stage, the unified modelized equation is used to establish a general control frame based on non-regular dynamical decoupling. A comparison is made and some simulation results are given with a two degree of freedom planar biped robot.

2013 ◽  
Vol 431 ◽  
pp. 262-268
Author(s):  
Chuang Feng Huai ◽  
Xue Yan Jia

Walking robot has complicate structure and strong ability to adapt ground conditions, and it is difficult to control. To realize dynamic walking of the humanoid robot, we have to establish robot dynamic models, design the control algorithm for gait and the stability postures. In this paper, study dynamic model and control system of a 7-links biped robot, build parameterized simulation model of biped walking robot, proceed gait planning and simulation experiments in the simulation surrounding, and get some experiment results. Compare the experiment data with the theoretic stable region and confirm that the biped walking robot as leg mechanism has good stability of static walking, and provide theoretic and data information for further work.


Author(s):  
Hualong Xie ◽  
Yao Xie ◽  
Fei Li

The biped robot with heterogeneous legs (BRHL) greatly facilitates the development of intelligent lower-limb prosthesis (ILLP). In the BRHL, the remaining leg of the amputee is simulated by an artificial leg, which provides the bionic leg with the precise gait following trajectory. Therefore, the artificial leg must closely mimic the features of the human leg. After analyzing the motion mechanism of the human knee, this paper designs a four-link bionic knee in light of the coexistence of rolling and sliding between the femur, the meniscus and the tibia. Drawing on the driving mechanism of leg muscles, two pneumatic artificial muscles (PAMs) were adopted to serve as the extensor and flexor muscles on the thigh. The two PAMs move in opposite direction, driving the knee motions in the artificial leg. To overcome the complexity of traditional PAM modelling methods, the author set up a PAM feature test platform to disclose the features of the PAMs, and built static and dynamic nonlinear mathematical models of the PAMs based on the test data. Next, a proportional-integral-derivative (PID) closed loop controller and sliding mode controller was designed for the bionic knee, referring to the kinetics equation of the knee. Through experimental simulation, it is confirmed that the proposed controller can accurately control the position of the four-link bionic knee, and that the designed bionic knee and PAM driving mode are both correct.


Sign in / Sign up

Export Citation Format

Share Document