The development of an atypical Hirnantia-brachiopod Fauna and the onset of glaciation in the late Ordovician of Gondwana

Author(s):  
Owen E. Sutcliffe ◽  
David A. T. Harper ◽  
Abdallah Aït Salem ◽  
Robert J. Whittington ◽  
Jonathan Craig

ABSTRACTThe development of an atypical Hirnantia Fauna in the late Ordovician of Gondwana was coeval with a slow eustatic fall induced by the abstraction of water into a growing ice sheet. This event is dated as early Hirnantian in age and occurred in tandem with the start of a major mass extinction. A tectonic episode in the Caradoc-Ashgill of North Africa differentiated the continental shelf into highs and lows and may have formed the land required for the accumulation of a permanent snow cover. Depositional lows were filled by regressive shallow-marine deposits in the early Hirnantian. During the mid-Hirnantian, advance and retreat of an ice sheet on the continental shelf resulted in the deposition of glaciomarine sediments above these regressive deposits. The demise of an atypical Hirnantia Fauna is attributed to deglaciation and the associated flooding of the continental shelf by a stratified anoxic water column. This glacioeustatic sea-level rise occurred in the late Hirnantian.

2021 ◽  
pp. 1-27
Author(s):  
Sofia Pereira ◽  
Jorge Colmenar ◽  
Jan Mortier ◽  
Jan Vanmeirhaeghe ◽  
Jacques Verniers ◽  
...  

Abstract The end-Ordovician mass extinction, linked to a major glaciation, led to deep changes in Hirnantian–Rhuddanian biotas. The Hirnantia Fauna, the first of two Hirnantian survival brachiopod-dominated communities, characterizes the lower–mid Hirnantian deposits globally, and its distribution is essential to understand how the extinction took place. In this paper, we describe, illustrate, and discuss the first macrofossiliferous Hirnantia Fauna assemblage from Belgium, occurring in the Tihange Member of the Fosses Formation at Tihange (Huy), within the Central Condroz Inlier. Six fossiliferous beds have yielded a low-diversity, brachiopod-dominated association. In addition to the brachiopods (Eostropheodonta hirnantensis, Plectothyrella crassicosta, Hirnantia sp., and Trucizetina? sp.), one trilobite (Mucronaspis sp.), four pelmatozoans (Xenocrinus sp., Cyclocharax [col.] paucicrenulatus, Conspectocrinus [col.] celticus, and Pentagonocyclicus [col.] sp.), three graptolites (Cystograptus ancestralis, Normalograptus normalis, and ?Metabolograptus sp.), together with indeterminate machaeridians and bryozoans were identified. The graptolite assemblage, from the Akidograptus ascensus-Parakidograptus acuminatus Biozone, indicates an early Rhuddanian (Silurian) age, and thus, an unexpectedly late occurrence of a typical Hirnantia Fauna. This Belgian association may represent an additional example of relict Hirnantia Fauna in the Silurian, sharing characteristics with the only other known from Rhuddanian rocks at Yewdale Beck (Lake District, England), although reworking has not been completely ruled out. The survival of these Hirnantian taxa into the Silurian might be linked to delayed post-glacial effects of rising temperature and sea-level, which may have favored the establishment of refugia in these two particular regions that were paleogeographically close during the Late Ordovician–early Silurian.


2017 ◽  
Author(s):  
Sarah L. Bradley ◽  
Thomas J. Reerink ◽  
Roderik S. W. van de Wal ◽  
Michiel M. Helsen

Abstract. Observational evidence, including offshore moraines and sediment cores confirm that at the Last Glacial maximum (LGM) the Greenland ice sheet (GrIS) grew to a significantly larger spatial extent than seen at present, grounding into Baffin Bay and to the continental shelf break. Given this larger spatial extent and it is close proximity to the neighboring Laurentide (LIS) and Innuitian Ice sheet (IIS), it is likely these ice sheets will have had a strong non-local influence on the spatial and temporal behaviour of the GrIS. Most previous paleo ice sheet modelling simulations recreated an ice sheet that either did not extend out onto the continental shelf; or utilized a simplified marine ice parametersiation and therefore did not fully include ice shelf dynamics, and or the sensitivity of the GrIS to this non-local signal from the surrounding ice sheets. In this paper, we investigated the evolution of the GrIS over the two most recent glacial-interglacial cycles (240 kyr BP to present day), using the ice sheet-ice shelf model, IMAU-ICE and investigated the influence of the LIS and IIS via an offline relative sea level (RSL) forcing generated by a GIA model. This RSL forcing controlled via changes in the water depth below the developing ice shelves, the spatial and temporal pattern of sub-ice shelf melting, which was parametrised in relation to changes in water depth. In the suite of simulations, the GrIS at the glacial maximums coalesced with the IIS to the north, expanded to the continental shelf break to the south west but remained too restricted to the north east. In terms of an ice-volume equivalent sea level contribution, at the Last Interglacial (LIG) and LGM the ice sheet added 1.46 m and −2.59 m to the budget respectively. The estimated lowering of the sea level by the Greenland contribution is considerably more (1.26 m) than most previous studies indicated whereas the contribution to the LIG high stand is lower (0.7 m). The spatial and temporal behaviour of the northern margin was highly variable in all simulations, controlled by the sub surface melt (SSM), which was dictated by the RSL forcing and the glacial history of the IIS and LIS. In contrast, the southwestern part of the ice sheet was insensitive to these forcing’s, with a uniform response in an all simulations controlled by the surface air temperature (SAT) forcing, derived from ice cores.


Author(s):  
Tim R Naish ◽  
Gary S Wilson

Ice-volume calibrations of the deep-ocean foraminiferal δ 18 O record imply orbitally influenced sea-level fluctuations of up to 30 m amplitude during the Mid-Pliocene, and up to 30 per cent loss of the present-day mass of the East Antarctic Ice Sheet (EAIS) assuming complete deglaciation of the West Antarctic Ice Sheet (WAIS) and Greenland. These sea-level oscillations have driven recurrent transgressions and regressions across the world's continental shelves. Wanganui Basin, New Zealand, contains the most complete shallow-marine Late Neogene stratigraphic record in the form of a continuous cyclostratigraphy representing every 41 and 100 ka sea-level cycle since ca 3.6 Ma. This paper presents a synthesis of faunally derived palaeobathymetric data for shallow-marine sedimentary cycles corresponding to marine isotope stages M2–100 ( ca 3.4–2.4 Ma). Our approach estimates the eustatic sea-level contribution to the palaeobathymetry curve by placing constraints on total subsidence and decompacted sediment accumulation. The sea-level estimates are consistent with those from δ 18 O curves and numerical ice sheet models, and imply a significant sensitivity of the WAIS and the coastal margins of the EAIS to orbital oscillations in insolation during the Mid-Pliocene period of relative global warmth. Sea-level oscillations of 10–30 m were paced by obliquity.


2007 ◽  
Vol 42 (1) ◽  
pp. 65-74 ◽  
Author(s):  
Jan Bednarski

ABSTRACTA general geomorphic model describing marine transgressions and regressions under non-glacial conditions is applied to the glacial environment. The general model recognizes two variables: i) the rate of relative sea level change, and ii) the rate of sedimentation at the coastline. The interaction of the two variables determines the nature of transgression or regression at a particular shoreline. In glaciated areas both sedimentation rates and relative sea level changes are controlled mainly by glacioclimatic responses of the ice. This is best illustrated along arctic coastlines where glacioisostatic loading caused extensive marine inundations during, and immediately after, the last glaciation. Subsequent emergence in the early Holocene has exposed extensive raised marine deposits. Clements Markham Inlet, on the northernmost coast of Ellesmere Island, Northwest Territories, contains raised marine deposits which have a definite spatial and sequential distribution related to the glacial history. The general geomorphic model is used to explain the distribution and geomorphology of this sediment. As the glacial cycle proceeds the balance between fluxes of sediment input and rate of sea level rise or fall will have a direct bearing on the type of stratigraphie sequence found in a particular area.


2016 ◽  
Vol 22 (1) ◽  
pp. 16
Author(s):  
Luli Gustiantini ◽  
Kresna Tri Dewi ◽  
Anne Muller ◽  
Praptisih Praptisih

A 30m-long sediment core covering the Holocene period was taken from the area of Gombong in the southern part of Central Java. The sediments were deposited in a shallow marine to lagoonal environment that was confirmed by the dominance of Ammonia beccarii along the core intervals. In addition, the species Quinqueloculina poeyana, Miliolinella lakemacquariensis, and Miliolinella subrotunda were also found in the sediments that are typical of normal shallow marine conditions. The decrease and increase in the abundance of these species throughout the core is an expression of sea level change in the area, which results the environmental changes. Low sea level is expressed by the dominance of Ammonia beccarii, and the low abundances or absence of the other three species. In contrast, high sea level stands are reflected by the presence of all four species. The high sea level would imply favorable conditions for benthic foraminifera because it would result in normal shallow marine conditions in the area. Finally, from this benthic assemblages study, it can be assumed that the environmental transformation from the originally shallow marine environment into land was occurred at level 5.5m depths of the sediment core, when all benthic foraminifera were terminated, including Ammonia beccarii. These new results from the shallow marine deposits in the Gombong area are a new contribution to the understanding of paleoenvironmental change in the region, which in turn is important for understanding sea level change as well as climate change in the region. Keywords: Benthic foraminifera, Holocene, paleoenvironmental changes, sea level changes Southcoast of Central Java Sebuah percontoh sedimen bor sepanjang 30m yang berumur Holosen diambil dari daerah Gombong, bagian selatan Jawa Tengah. Percontoh sedimen diendapkan pada lingkungan laut dangkal –laguna, berdasarkan kelimpahan foraminifera bentik Ammonia beccarii di sepanjang sedimen bor. Selain itu ditemukan juga spesies-spesies Quinqueloculina poeyana, Miliolinella lakemacquariensis, dan Miliolinella subrotunda, yang merupakan penciri lingkungan laut dangkal dengan kondisi normal. Penurunan dan kenaikan dari kelimpahan masing-masing spesies foraminifera bentik di atas, dapat mencerminkan perubahan permukaan air laut daerah studi, yang menghasilkan terjadinya perubahan lingkungan. Penurunan muka air laut dapat dicirikan dengan hadirnya Ammonia beccarii yang sangat dominan, sementara spesies lainnya cenderung berkurang bahkan hampir tidak ada. Sebaliknya ketika muka air laut naik, maka keempat spesies foraminifera tersebut cenderung hadir dengan jumlah yang seimbang satu sama lainnya. Kenaikan muka air laut akan menghasilkan lingkungan laut normal yang merupakan kondisi ideal bagi foraminifera. Akhirnya, dari kajian perubahan kelimpahan foraminifera bentik ini, dapat diperkirakan bahwa pada level kedalaman bor 5,5m, terjadi perubahan lingkungan dari lingkungan laut dangkal-laguna menjadi daratan, yang ditandai dengan musnahnya semua jenis foraminifera bentik, termasuk Ammonia beccarii. HAsil kajian ini merupakan kontribusi baru untuk mempelajari perubahan lingkungan pada lokasi penelitian, terutama penting untuk lebih mengerti mengenai perubahan muka air laut dan perubahan iklim. Keywords: Benthic foraminifera, Holocene, paleoenvironmental changes, sea level changes


Geology ◽  
2018 ◽  
Vol 46 (7) ◽  
pp. 595-598 ◽  
Author(s):  
A. Pohl ◽  
J. Austermann
Keyword(s):  

1980 ◽  
Vol 13 (1) ◽  
pp. 1-32 ◽  
Author(s):  
M. G. Grosswald

AbstractA considerable portion of Northern Eurasia, and particularly its continental shelf, was glaciated by inland ice during late Weichsel time. This was first inferred from such evidence as glacial striae, submarine troughs, sea-bed diamictons, boulder trains on adjacent land, and patterns of glacioisostatic crustal movements. Subsequently, the inference was confirmed by data on the occurrence and geographic position of late Weichselian end moraines and proglacial lacustrine deposits.The south-facing outer moraines in the northeastern Russian Plain, northern West Siberia, and on Taimyr Peninsula are underlain by sediments containing wood and peat, the radiocarbon dating of which yielded ages of 22,000 to 45,000 yr B.P. The youngest late-glacial moraines are of Holocene age: the double Markhida moraine in the lower Pechora River basin, presumably associated with “degradational” surges of the Barents Ice Dome, is underlain by sediments with wood and peat dated at 9000 to 9900 yr B.P.: this suggests that deglaciation of the Arctic continental shelf of Eurasia was not completed until after 9000 yr B.P.The reconstructed ice-front lines lead to the conclusion that the late Weichselian ice sheet of Northern Eurasia (proposed name: theEurasian Ice Sheet) extended without interruptions from southwestern Ireland to the northeastern end of Taimyr Peninsula, a distance of 6000 km: it covered an area of 8,370,000 km2, half of which lay on the present-day continental shelves and a quarter on lowlands that were depressed isostatically below sea level. Hence, the ice sheet was predominantly marine-based.A contour map of the ice sheet based both on the dependence of the heights of ice domes upon their radii and on factual data concerning the impact of bedrock topography upon ice relief has been constructed. The major features of the ice sheet were the British, Scandinavian, Barents, and Kara Ice Domes that had altitudes of 1.9 to 3.3 km and were separated from one another by ice saddles about 1.5 km high. At the late Weichselian glacial maximum, all the main ice-dispersion centers were on continental shelves and coastal lowlands, whereas mountain centers, such as the Polar Urals and Byrranga Range, played only a local role.The portions of the ice sheet that were grounded on continental shelves some 700 to 900 m below sea level were inherently unstable and could exist only in conjunction with confined and pinned floating ice shelves that covered the Arctic Ocean and the Greenland and Norwegian Seas.The Eurasian Ice Sheet impounded the Severnaya Dvina, Mezen, Pechora, Ob, Irtysh, and Yneisei Rivers, and caused the formation of ice-dammed lakes on the northern Russian Plain and in West Siberia. Until about 13,500 yr B.P. the proglacial system of lakes and spillways had a radial pattern; it included large West Siberian lakes, the Caspian and Black Seas, and ended in the Mediterranian Sea. Later, the system became marginal and discharged proglacial water mainly into the Norwegian Sea.


Author(s):  
Fabrizio Antonioli ◽  
Lucio Calcagnile ◽  
Luigi Ferranti ◽  
Giuseppe Mastronuzzi ◽  
Carmelo Monaco ◽  
...  

Investigation of sea-level positions during the highly-dynamic Marine Isotope Stage 3 (MIS 3: 29-61 kyrs BP) proves difficult because: i) in stable and subsiding areas, coeval coastal sediments are currently submerged at depths of few to several tens of meters below present sea level; ii) in uplifting areas, the preservation of geomorphic features and sedimentary records is limited due to the erosion occurred during the Last Glacial Maximum (LGM) with sea level at depth of -130 m, followed by marine transgression that determined the development of ravinement surfaces. This study discusses previous research in the Mediterranean and elsewhere, and describes new fossiliferous marine deposits laying on metamorphic bedrock of Cannitello (Calabria, Italy). Radiocarbon ages of marine shells (about 43 kyrs cal BP) indicate that these deposits, presently between 28 and 30 meters above sea level, formed during MIS 3.1. Elevation correction of the Cannitello outcrops (considered in an intermediate-to-far-field position with respect to the ice sheet) with the local vertical tectonic rate and Glacial Isostatic Adjustment (GIA) rate allows to propose a revision of the eustatic depth for this highstand. Our results are consistent with recently proposed estimates based on a novel ice sheet modelling technique.


Sign in / Sign up

Export Citation Format

Share Document