Late Pleistocene siliceous sinter associated with fluvial, lacustrine, volcaniclastic and landslide deposits at Tahunaatara, Taupo Volcanic Zone, New Zealand

2001 ◽  
Vol 71 (5) ◽  
pp. 727-746 ◽  
Author(s):  
K. A. Campbell ◽  
K. Sannazzaro ◽  
K.A. Rodgers ◽  
N.R. Herdianita ◽  
P.R.L. Browne

2003 ◽  
Vol 40 (11) ◽  
pp. 1549-1569 ◽  
Author(s):  
Brian Jones ◽  
R W Renaut

Complex ornate sinter deposits are found in many hot spring and geysers systems throughout the world, including those located in the Taupo Volcanic Zone on the North Island of New Zealand. Those sinters are formed of opal-A that replaced microbes, opal-A precipitated as cement, accessory minerals (e.g., kaolinite, jarosite, calcite), biological detritus (e.g., leaves, wood, pollen grains), and lithic detritus. The opal-A is compositionally variable because of the amount of water (OH and H2O) and, in some cases, accessory elements (e.g., Au, Ag) bound into its structure. The composition and fabric of the siliceous sinter found at any locality reflect the relative balance among the processes of replacement, precipitation, and deposition. The microbes that inhabit these systems are of critical importance because they are commonly replaced by and (or) encrusted with opal-A. In many settings, copious amounts of opal-A are precipitated as cement around the frameworks of silicified filaments. The cementation process, which continues for as long as waters supersaturated with respect to opal-A flow through the sinter, commonly reduces the porosity of the sinters by as much as 50%. This process is probably of far greater significance than has been previously recognized. The textural and compositional complexity of siliceous sinters found in hot spring and geyser systems reflects the myriad of interrelated processes that control their formation.


2003 ◽  
Vol 94 (4) ◽  
pp. 485-501 ◽  
Author(s):  
Kathleen A. Campbell ◽  
T. F. Buddle ◽  
P. R. L. Browne

ABSTRACTThe Tahunaatara sinter, Taupo Volcanic Zone, New Zealand, is a ∼17–20-kyr-old hot-spring deposit of opal-A mineralogy. It is interbedded with fluvial, lacustrine and volcaniclastic sediments, some silicified by infusing thermal waters. The exposed sinter (∼4 m thick, 90 m long) was truncated at its southern margin by a landslide, which deposited a conglomerate (up to 2 m thick, 56 m long) of sinter blocks and associated strata nearby. Kaolinite-rich cobbles at the base of the conglomerate indicate a change in the thermal regime and its probable trigger: acid steamcondensate produced alteration. Clasts in the landslide are oriented SW, the same direction as flattened plant reeds entombed in sinter, and as intercalated fluvial beds. Thus, thermal waters, stream flow and the landslide all likely followed the same palaeo-valley, which is similar in terrain and stratigraphy to the Devonian Rhynie hydrothermal system. The plant-rich, layered, in situ sinter contains fossilised microbes and rare stromatolites, and was deposited on mid- to distal slopes adjacent to marshes. Ash falls, fluvial activity and ponding occurred during and after the thermal activity. Unsilicified tephric Ohakea loess (∼26–17 kyr BP) and Taupo Tephra (1·86 kyr BP) blanket both sinter and landslide. Today, the deposits form resistant remnants in a topographically inverted landscape.


2018 ◽  
Author(s):  
Natalie E. Wigger ◽  
◽  
James E. Faulds ◽  
Samuel J. Hampton ◽  
Josh W. Borella ◽  
...  

2014 ◽  
Vol 2 (1) ◽  
Author(s):  
Paul A Siratovich ◽  
Michael J Heap ◽  
Marlène C Villenueve ◽  
James W Cole ◽  
Thierry Reuschlé

Sign in / Sign up

Export Citation Format

Share Document