THE LOCAL ASYMPTOTIC POWER OF CERTAIN TESTS FOR FRACTIONAL INTEGRATION

1999 ◽  
Vol 15 (5) ◽  
pp. 704-709 ◽  
Author(s):  
Jonathan H. Wright

It is possible to construct a test of the null of no fractional integration that has nontrivial asymptotic power against a sequence of alternatives specifying that the series is I(d) with d = O(T−1/2), where T is the sample size. In this paper, I show that tests for fractional integration that are based on the partial sum process of the time series have only trivial asymptotic power (i.e., equal to the size) against this sequence of local alternatives. These tests include the rescaled-range test. In this sense, despite its widespread use in empirical work, the rescaled-range test is a poor test for fractional integration.

1994 ◽  
Vol 10 (3-4) ◽  
pp. 672-700 ◽  
Author(s):  
Graham Elliott ◽  
James H. Stock

The distribution of statistics testing restrictions on the coefficients in time series regressions can depend on the order of integration of the regressors. In practice, the order of integration is rarely known. We examine two conventional approaches to this problem — simply to ignore unit root problems or to use unit root pretests to determine the critical values for second-stage inference—and show that both exhibit substantial size distortions in empirically plausible situations. We then propose an alternative approach in which the second-stage critical values depend continuously on a first-stage statistic that is informative about the order of integration of the regressor. This procedure has the correct size asymptotically and good local asymptotic power.


2002 ◽  
Vol 18 (6) ◽  
pp. 1309-1335 ◽  
Author(s):  
Michael Jansson ◽  
Niels Haldrup

This paper proposes a notion of near cointegration and generalizes several existing results from the cointegration literature to the case of near cointegration. In particular, the properties of conventional cointegration methods under near cointegration are characterized, thereby investigating the robustness of cointegration methods. In addition, we obtain local asymptotic power functions of five cointegration tests that take cointegration as the null hypothesis.


2014 ◽  
Vol 31 (3) ◽  
pp. 539-559 ◽  
Author(s):  
I. Gaia Becheri ◽  
Feike C. Drost ◽  
Ramon van den Akker

In a Gaussian, heterogeneous, cross-sectionally independent panel with incidental intercepts, Moon, Perron, and Phillips (2007, Journal of Econometrics 141, 416–459) present an asymptotic power envelope yielding an upper bound to the local asymptotic power of unit root tests. In case of homogeneous alternatives this envelope is known to be sharp, but this paper shows that it is not attainable for heterogeneous alternatives. Using limit experiment theory we derive a sharp power envelope. We also demonstrate that, among others, one of the likelihood ratio based tests in Moon et al. (2007, Journal of Econometrics 141, 416–459), a pooled generalized least squares (GLS) based test using the Breitung and Meyer (1994, Applied Economics 25, 353–361) device, and a new test based on the asymptotic structure of the model are all asymptotically UMP (Uniformly Most Powerful). Thus, perhaps somewhat surprisingly, pooled regression-based tests may yield optimal tests in case of heterogeneous alternatives. Although finite-sample powers are comparable, the new test is easy to implement and has superior size properties.


2020 ◽  
Vol 34 (10) ◽  
pp. 1487-1505
Author(s):  
Katja Polotzek ◽  
Holger Kantz

Abstract Correlations in models for daily precipitation are often generated by elaborate numerics that employ a high number of hidden parameters. We propose a parsimonious and parametric stochastic model for European mid-latitude daily precipitation amounts with focus on the influence of correlations on the statistics. Our method is meta-Gaussian by applying a truncated-Gaussian-power (tGp) transformation to a Gaussian ARFIMA model. The speciality of this approach is that ARFIMA(1, d, 0) processes provide synthetic time series with long- (LRC), meaning the sum of all autocorrelations is infinite, and short-range (SRC) correlations by only one parameter each. Our model requires the fit of only five parameters overall that have a clear interpretation. For model time series of finite length we deduce an effective sample size for the sample mean, whose variance is increased due to correlations. For example the statistical uncertainty of the mean daily amount of 103 years of daily records at the Fichtelberg mountain in Germany equals the one of about 14 years of independent daily data. Our effective sample size approach also yields theoretical confidence intervals for annual total amounts and allows for proper model validation in terms of the empirical mean and fluctuations of annual totals. We evaluate probability plots for the daily amounts, confidence intervals based on the effective sample size for the daily mean and annual totals, and the Mahalanobis distance for the annual maxima distribution. For reproducing annual maxima the way of fitting the marginal distribution is more crucial than the presence of correlations, which is the other way round for annual totals. Our alternative to rainfall simulation proves capable of modeling daily precipitation amounts as the statistics of a random selection of 20 data sets is well reproduced.


Author(s):  
Christopher F. Baum ◽  
Stan Hurn ◽  
Kenneth Lindsay

In this article, we describe and implement the local Whittle and exact local Whittle estimators of the order of fractional integration of a time series.


2018 ◽  
Vol 35 (6) ◽  
pp. 1201-1233 ◽  
Author(s):  
Fabrizio Iacone ◽  
Stephen J. Leybourne ◽  
A.M. Robert Taylor

We develop a test, based on the Lagrange multiplier [LM] testing principle, for the value of the long memory parameter of a univariate time series that is composed of a fractionally integrated shock around a potentially broken deterministic trend. Our proposed test is constructed from data which are de-trended allowing for a trend break whose (unknown) location is estimated by a standard residual sum of squares estimator applied either to the levels or first differences of the data, depending on the value specified for the long memory parameter under the null hypothesis. We demonstrate that the resulting LM-type statistic has a standard limiting null chi-squared distribution with one degree of freedom, and attains the same asymptotic local power function as an infeasible LM test based on the true shocks. Our proposed test therefore attains the same asymptotic local optimality properties as an oracle LM test in both the trend break and no trend break environments. Moreover, this asymptotic local power function does not alter between the break and no break cases and so there is no loss in asymptotic local power from allowing for a trend break at an unknown point in the sample, even in the case where no break is present. We also report the results from a Monte Carlo study into the finite-sample behaviour of our proposed test.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Ben G. Armstrong ◽  
Antonio Gasparrini ◽  
Aurelio Tobias ◽  
Francesco Sera

Sign in / Sign up

Export Citation Format

Share Document