Relative effect of litter quality, forest type and their interaction on leaf decomposition in south-east Brazilian forests

2008 ◽  
Vol 24 (2) ◽  
pp. 149-156 ◽  
Author(s):  
Camila de Toledo Castanho ◽  
Alexandre Adalardo de Oliveira

Abstract:Decomposition was studied in a reciprocal litter transplant experiment to examine the effects of forest type, litter quality and their interaction on leaf decomposition in four tropical forests in south-east Brazil. Litterbags were used to measure decomposition of leaves of one tree species from each forest type:Calophyllum brasiliensefrom restinga forest;Guapira oppositafrom Atlantic forest;Esenbeckia leiocarpafrom semi-deciduous forest; andCopaifera langsdorffiifrom cerradão. Decomposition rates in rain forests (Atlantic and restinga) were twice as fast as those in seasonal forests (semi-deciduous and cerradão), suggesting that intensity and distribution of precipitation are important predictors of decomposition rates at regional scales. Decomposition rates varied by species, in the following order:E. leiocarpa>C. langsdorffii>G. opposita>C. brasiliense. However, there was no correlation between decomposition rates and chemical litter quality parameters: C:N, C:P, lignin concentration and lignin:N. The interaction between forest type and litter quality was positive mainly becauseC. langsdorffiidecomposed faster than expected in its native forest. This is a potential indication of a decomposer's adaptation to specific substrates in a tropical forest. These findings suggest that besides climate, interactions between decomposers and plants might play an essential role in decomposition processes and it must be better understood.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
José Camilo Bedano ◽  
Laura Sacchi ◽  
Evangelina Natale ◽  
Herminda Reinoso

Plant invasions may alter the soil system by changing litter quality and quantity, thereby affecting soil community and ecosystem processes. We investigated the effect of Tamarix ramosissima invasion on the decomposer fauna and litter decomposition process, as well as the importance of litter quality in decomposition. Litter decomposition and decomposer communities were evaluated in two monospecific saltcedar forests and two native forests in Argentina, in litterbags containing either local litter (saltcedar or dominant native species) or a control litter. Saltcedar invasion produced an increase in Collembola, Acari, and total mesofauna abundance, regardless of the litter type. Control litter decomposition was higher in the native forest than in the saltcedar forest, showing that increased abundance of decomposer fauna does not necessarily accelerate decomposition processes. Local litter decomposition was not different between forests, suggesting that decomposer fauna of both ecosystems is adapted to efficiently decompose the autochthonous litter. Our results suggest that the introduction of a resource with higher quality than the local one has a negative effect on decomposition in both ecosystems, which is more pronounced in the invaded forest than in the native forest. This finding stresses the low plasticity of saltcedar decomposer community to adapt to short-term environmental changes.


1990 ◽  
Vol 55 ◽  
Author(s):  
D. Maddelein ◽  
N. Lust ◽  
S. Meyen ◽  
B. Muys

The  State Forest Pijnven, created early this century by afforestation with Scots  pine (Pinus sylvestris L.) of  heathland areas is now characterised in most stands by an important ingrowth  of deciduous tree species. Ingrowth is dominated by red oak (Quercus rubra L.) and black cherry (Prunus serotina Ehrh.), both  species originating from North America.  Deciduous ingrowth in the pine stands profoundly influences herbal  composition of the stand. Deschampsia flexuosa (L.) Trin., abundant in all older pine stands, disappears when  deciduous trees settle and species diversity, already low in the pine stands,  further diminishes. Important oak and cherry regeneration is depending on the  presence of seed trees in the vicinity; when lacking, a new pine generation  manages to settle. A good red oak regeneration can be useful as a basis for  stand conversion towards a mixed, uneven-aged deciduous forest type, but in  many cases this possibility is hampered by massive invasion of black cherry,  preventing all other species to regenerate.


1998 ◽  
Vol 6 (1) ◽  
pp. 1-12 ◽  
Author(s):  
M Francesca Cotrufo ◽  
Björn Berg ◽  
Werner Kratz

There is evidence that N concentration in hardwood leaf litter is reduced when plants are raised in an elevated CO2 atmosphere. Reductions in the N concentration of leaf litter have been found for tree species raised under elevated CO2, with reduction in N concentration ranging from ca. 50% for sweet chestnut (Castanea sativa) to 19% for sycamore (Acer platanoides). However, the effects of elevated CO2 on the chemical composition of litter has been investigated only for a limited number of species. There is also little information on the effects of increased CO2 on the quality of root tissues. If we consider, for example, two important European forest ecosystem types, the dominant species investigated for chemical changes are just a few. Thus, there are whole terrestrial ecosystems in which not a single species has been investigated, meaning that the observed effects of a raised CO2 level on plant litter actually has a large error source. Few reports present data on the effects of elevated CO2 on litter nutrients other than N, which limits our ability to predict the effects of elevated CO2 on litter quality and thus on its decomposability. In litter decomposition three separate steps are seen: (i) the initial stages, (ii) the later stages, and (iii) the final stages. The concept of "substrate quality," translated into chemical composition, will thus change between early stages of decomposition and later ones, with a balanced proportion of nutrients (e.g., N, P, S) being required in the early decomposition phase. In the later stages decomposition rates are ruled by lignin degradation and that process is regulated by the availability of certain nutrients (e.g., N, Mn), which act as signals to the lignin-degrading soil microflora. In the final stages the decomposition comes to a stop or may reach an extremely low decomposition rate, so low that asymptotic decomposition values may be estimated and negatively related to N concentrations. Studies on the effects of changes in chemical composition on the decomposability of litter have mainly been made during the early decomposition stages and they generally report decreased litter quality (e.g., increased C/N ratio), resulting in lower decomposition rates for litter raised under elevated CO2 as compared with control litter. No reports are found relating chemical changes induced by elevated CO2 to litter mass-loss rates in late stages. By most definitions, at these stages litter has turned into humus, and many studies demonstrated that a raising of the N level may suppress humus decomposition rate. It is thus reasonable to speculate that a decrease in N levels in humus would accelerate decomposition and allow it to proceed further. There are no experimental data on the long-term effect of elevated CO2 levels, and a decrease in the storage of humus and nutrients could be predicted, at least in temperate and boreal forest systems. Future works on the effects of elevated CO2 on litter quality need to include studies of a larger number of nutrients and chemical components, and to cover different stages of decomposition. Additionally, the response of plant litter quality to elevated CO2 needs to be investigated under field conditions and at the community level, where possible shifts in community composition (i.e., C3 versus C4 ; N2 fixers versus nonfixers) predicted under elevated CO2 are taken into account.Key words: climate change, substrate quality, carbon dioxide, plant litter, chemical composition, decomposition.


Web Ecology ◽  
2001 ◽  
Vol 2 (1) ◽  
pp. 32-37 ◽  
Author(s):  
Z. Elek ◽  
T. Magura ◽  
T. Tóthmérész

Abstract. The impacts of non-native Norway spruce plantation on the abundance and species richness of carabids were studied in the Bükk National Park in Hungary, central Europe. Pitfall catches from recently established (5 yr old), young (15 yr after planting), middle-aged (30 yr after planting), old Norway spruce Picea abies plantation (50 yr after planting), and a native submontane beech forest (Fagetum sylvaticae) as a control stand were compared. Our results showed that deciduous forest species decreased significantly in abundance in the plantations, and appeared in high abundance only in the native beech forest. Furthermore, open habitat species increased remarkably in abundance in the recently established plantation. Carabids were significantly more abundant and species rich in the native forest than in the plantations, while differences were not significant among the plantations. Multiple regression between the abundance and species richness of carabids and twelve environmental measurements showed that pH of the soil, herb cover and density of the carabids’ prey had a significant effect in determining abundance and species richness. Our results showed that plantation of non-native Norway spruce species had a detrimental effect on the composition of carabid communities and no regeneration could be observed during the growth of plantations even 50 yr after the establishment. This emphasises the importance of an active nature management practice to facilitate the recolonization of the native species.


2005 ◽  
Vol 35 (1) ◽  
pp. 161-174 ◽  
Author(s):  
Jason G Vogel ◽  
David W Valentine ◽  
Roger W Ruess

Climate warming at high latitudes is expected to increase root and microbial respiration and thus cause an increase in soil respiration. We measured the root and microbial components of soil respiration near Fairbanks, Alaska, in 2000 and 2001, in three black spruce (Picea mariana (Mill) B.S.P.) forests. We hypothesized faster decomposition correlates with greater amounts of both root and microbial contributions to soil respiration. Contrary to our prediction, the site with the coolest summer soil temperatures and slowest decomposition (site identification "high-np") had significantly (p < 0.05) greater growing season soil respiration (485 g C·m–2·year–1) than the two other sites (372 and 332 g C·m–2·year–1). Spruce C allocation to root respiration was significantly greater, and fine-root N concentration was 10% and 12% greater (p < 0.05) at high-np than at the other two sites. High-np spruce foliage was also more enriched in 13C and depleted in 15N, suggesting either lower available moisture or slower N turnover. Either factor could drive greater C allocation to roots; however, a literature review suggests moisture deficit corresponds to greater C allocation to roots in black spruce forests across the boreal ecosystem. Controls on spruce C allocation need to be resolved before making the generalization that soil respiration will increase with warming in this forest type.


2014 ◽  
Vol 30 (5) ◽  
pp. 469-480 ◽  
Author(s):  
Riddhika Kalle ◽  
Tharmalingam Ramesh ◽  
Qamar Qureshi ◽  
Kalyanasundaram Sankar

Abstract:Rigorous population studies on many small carnivores are lacking in India. Presence-absence models with habitat covariates were applied to estimate seasonal occupancy and abundance of nine small-carnivore species from camera-trap data in Mudumalai Tiger Reserve (2010 and 2011). We deployed 25 camera-trap stations in the deciduous forest, 21 in the semi-evergreen forest and 26 in the dry thorn forest. In total, 7380 trap-nights yielded 448 photographs of small carnivores: jungle cat (n = 72), leopard cat (n = 6), rusty-spotted cat (n = 11), small Indian civet (n = 89), common palm civet (n = 37), brown palm civet (n = 20), stripe-necked mongoose (n = 66), ruddy mongoose (n = 96) and Indian grey mongoose (n = 51). In the dry season, rusty-spotted cat was the rarest carnivore with an average abundance (λmean) of 0.24 ± 0.26, while ruddy mongoose was the most abundant (λmean = 0.90 ± 0.40). In the wet season, leopard cat was the rarest species (λmean = 0.048 ± 0.041) while grey mongoose was the most abundant (λmean = 0.68 ± 0.35). Abundance of jungle cat, common palm civet, ruddy mongoose and grey mongoose increased in the dry thorn forest whereas in the dry season abundance of small Indian civet decreased in this forest type. Abundance of leopard cat and small Indian civet was not influenced by habitat in the wet season. Deciduous forest was positively associated with abundance of rusty-spotted cat. Deciduous and semi-evergreen forests had a positive effect on abundance of stripe-necked mongoose while the latter was a positive predictor of abundance and occupancy for brown palm civet. Improved modelling approaches can account for the spatio-temporal variation in habitat use of small carnivores occupying specialized niches in heterogeneous tropical forests of southern India.


2000 ◽  
Vol 60 (2) ◽  
pp. 237-247 ◽  
Author(s):  
A. G. CHIARELLO

A survey of mammals and birds was carried out in a semi-deciduous forest fragment of 150 ha located in a zone of intensive agriculture in Ribeirão Preto, State of São Paulo, south-eastern Brazil. Line transect sampling was used to census mammals and birds during six days, totalling 27.8 km of trails and 27.8 hours of observation. Twenty mammal species were confirmed in the area (except bats and small mammals), including rare or endangered species, such as the mountain lion (Puma concolor), the maned wolf (Chrysocyon brachyurus), and the ocelot (Leopardus pardalis). The brown capuchin monkey (Cebus apella) and the black-tufted-ear marmoset (Callithrix penicillata) were found frequently, suggesting high population density in the fragment. Regarding the avifauna, 49 bird species were recorded, most of them typical of open areas or forest edges. Some confirmed species, however, are becoming increasingly rare in the region, as for example the muscovy duck (Cairina moschata) and the toco toucan (Ramphastos toco). The results demonstrate that forest fragment of this size are refuges for native fauna in a region dominated almost exclusively by sugar-cane plantations. Besides faunal aspects, the conservation of these fragments is of great importance for the establishment of studies related to species preservation in the long term, including reintroduction and translocation projects, as well as studies related to genetic health of isolated populations.


2011 ◽  
Vol 174 (5) ◽  
pp. 710-720 ◽  
Author(s):  
Scott A. Parsons ◽  
Ivan R. Lawler ◽  
Robert A. Congdon ◽  
Stephen E. Williams

2012 ◽  
Vol 367 (1605) ◽  
pp. 3025-3032 ◽  
Author(s):  
David Ott ◽  
Björn C. Rall ◽  
Ulrich Brose

Macrofauna invertebrates of forest floors provide important functions in the decomposition process of soil organic matter, which is affected by the nutrient stoichiometry of the leaf litter. Climate change effects on forest ecosystems include warming and decreasing litter quality (e.g. higher C : nutrient ratios) induced by higher atmospheric CO 2 concentrations. While litter-bag experiments unravelled separate effects, a mechanistic understanding of how interactions between temperature and litter stoichiometry are driving decomposition rates is lacking. In a laboratory experiment, we filled this void by quantifying decomposer consumption rates analogous to predator–prey functional responses that include the mechanistic parameters handling time and attack rate. Systematically, we varied the body masses of isopods, the environmental temperature and the resource between poor (hornbeam) and good quality (ash). We found that attack rates increased and handling times decreased (i) with body masses and (ii) temperature. Interestingly, these relationships interacted with litter quality: small isopods possibly avoided the poorer resource, whereas large isopods exhibited increased, compensatory feeding of the poorer resource, which may be explained by their higher metabolic demands. The combination of metabolic theory and ecological stoichiometry provided critically important mechanistic insights into how warming and varying litter quality may modify macrofaunal decomposition rates.


Sign in / Sign up

Export Citation Format

Share Document