Geographic, environmental and biotic sources of variation in the nutrient relations of tropical montane forests

2015 ◽  
Vol 32 (5) ◽  
pp. 368-383 ◽  
Author(s):  
James W. Dalling ◽  
Katherine Heineman ◽  
Grizelle González ◽  
Rebecca Ostertag

Abstract:Tropical montane forests (TMF) are associated with a widely observed suite of characteristics encompassing forest structure, plant traits and biogeochemistry. With respect to nutrient relations, montane forests are characterized by slow decomposition of organic matter, high investment in below-ground biomass and poor litter quality, relative to tropical lowland forests. However, within TMF there is considerable variation in substrate age, parent material, disturbance and species composition. Here we emphasize that many TMFs are likely to be co-limited by multiple nutrients, and that feedback among soil properties, species traits, microbial communities and environmental conditions drive forest productivity and soil carbon storage. To date, studies of the biogeochemistry of montane forests have been restricted to a few, mostly neotropical, sites and focused mainly on trees while ignoring mycorrhizas, epiphytes and microbial community structure. Incorporating the geographic, environmental and biotic variability in TMF will lead to a greater recognition of plant–soil feedbacks that are critical to understanding constraints on productivity, both under present conditions and under future climate, nitrogen-deposition and land-use scenarios.

PLoS ONE ◽  
2017 ◽  
Vol 12 (6) ◽  
pp. e0179653 ◽  
Author(s):  
Gérard Imani ◽  
Faustin Boyemba ◽  
Simon Lewis ◽  
Nsharwasi Léon Nabahungu ◽  
Kim Calders ◽  
...  

2020 ◽  
Vol 101 (3) ◽  
Author(s):  
Guillermo Bañares‐de‐Dios ◽  
Manuel J. Macía ◽  
Íñigo Granzow‐de la Cerda ◽  
Itziar Arnelas ◽  
Gabriel Martins Carvalho ◽  
...  

Diversity ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 156
Author(s):  
Amélie A. M. Cantarel ◽  
Soraya Rouifed ◽  
Laurent Simon ◽  
Julien Bourg ◽  
Jonathan Gervaix ◽  
...  

The effects of invasive species at the ecosystem level remain an important component required to assess their impacts. Here, we conducted an experimental study with labeled nitrogen in two types of soil (low and high nitrate conditions), investigating the effects of (1) the presence of Fallopia x bohemica on the traits of three native species (Humulus lupulus, Sambucus ebulus, and Urtica dioica) and (2) interspecific competition (monoculture of the invasive species, monoculture of the native species, and a mixture of invasive/native species) on nitrification, denitrification, and related microbial communities (i.e., functional gene abundances). We found that the species with the higher nitrate assimilation rate (U. dioica) was affected differently by the invasive species, with no effect or even an increase in aboveground biomass and number of leaves. F. x bohemica also decreased denitrification, but only in the soil with high nitrate concentrations. The impacts of the invasive species on nitrification and soil microorganisms depended on the native species and the soil type, suggesting that competition for nitrogen between plants and between plants and microorganisms is highly dependent on species traits and environmental conditions. This research highlights that studies looking at the impacts of invasive species on ecosystems should consider the plant–soil–microorganism complex as a whole.


Sign in / Sign up

Export Citation Format

Share Document