Optimal Control for an Mx/G/1 Queue with Two Operation Modes

1997 ◽  
Vol 11 (2) ◽  
pp. 255-265 ◽  
Author(s):  
Alexander Dudin

The controlled Mx/G/1-type queueing model with two modes of operation is considered. The modes are characterized by different service time distributions and input rates. The switchover times are imposed in the model. The embedded stationary queue-length distribution and the explicit dependence of operation criteria on switchover levels are derived.

1971 ◽  
Vol 8 (3) ◽  
pp. 480-493 ◽  
Author(s):  
Hisashi Mine ◽  
Katsuhisa Ohno

Fixed-cycle traffic light queues have been investigated by probabilistic methods by many authors. Beckmann, McGuire and Winsten (1956) considered a discrete time queueing model with binomial arrivals and regular departure headways and derived a relation between the stationary mean delay per vehicle and the stationary mean queue-length at the beginning of a red period of the traffic light. Haight (1959) and Buckley and Wheeler (1964) considered models with Poisson arrivals and regular departure headways and investigated certain properties of the queue-length. Newell (1960) dealt with the model proposed by the first authors and obtained the probability generating function of the stationary queue-length distribution. Darroch (1964) discussed a more general discrete time model with stationary, independent arrivals and regular departure headways and derived a necessary and sufficient condition for the stationary queue-length distribution to exist and obtained its probability generating function. The above two authors, Little (1961), Miller (1963), Newell (1965), McNeil (1968), Siskind (1970) and others gave approximate expressions for the stationary mean delay per vehicle for fixed-cycle traffic light queues of various types. All of the authors mentioned above dealt with the queue-length.


1996 ◽  
Vol 7 (5) ◽  
pp. 519-543 ◽  
Author(s):  
Yongzhi Yang ◽  
Charles Knessl

We consider the GI/M/1 – K queue which has a capacity of K customers. Using singular perturbation methods, we construct asymptotic approximations to the stationary queue length distribution. We assume that K is large and treat several different parameter regimes. Extensive numerical comparisons are used to show the quality of the proposed approximations.


2018 ◽  
Vol 7 (2.15) ◽  
pp. 76
Author(s):  
Koh Siew Khew ◽  
Chin Ching Herny ◽  
Tan Yi Fei ◽  
Pooi Ah Hin ◽  
Goh Yong Kheng ◽  
...  

This paper considers a single server queue in which the service time is exponentially distributed and the service station may breakdown according to a Poisson process with the rates γ and γ' in busy period and idle period respectively. Repair will be performed immediately following a breakdown. The repair time is assumed to have an exponential distribution. Let g(t) and G(t) be the probability density function and the cumulative distribution function of the interarrival time respectively. When t tends to infinity, the rate of g(t)/[1 – G(t)] will tend to a constant. A set of equations will be derived for the probabilities of the queue length and the states of the arrival, repair and service processes when the queue is in a stationary state. By solving these equations, numerical results for the stationary queue length distribution can be obtained. 


2021 ◽  
Vol 36 ◽  
pp. 04001
Author(s):  
Siew Khew Koh ◽  
Ching Herny Chin ◽  
Yi Fei Tan ◽  
Tan Ching Ng

A single-server queueing system with negative customers is considered in this paper. One positive customer will be removed from the head of the queue if any negative customer is present. The distribution of the interarrival time for the positive customer is assumed to have a rate that tends to a constant as time t tends to infinity. An alternative approach will be proposed to derive a set of equations to find the stationary probabilities. The stationary probabilities will then be used to find the stationary queue length distribution. Numerical examples will be presented and compared to the results found using the analytical method and simulation procedure. The advantage of using the proposed alternative approach will be discussed in this paper.


1971 ◽  
Vol 8 (03) ◽  
pp. 480-493 ◽  
Author(s):  
Hisashi Mine ◽  
Katsuhisa Ohno

Fixed-cycle traffic light queues have been investigated by probabilistic methods by many authors. Beckmann, McGuire and Winsten (1956) considered a discrete time queueing model with binomial arrivals and regular departure headways and derived a relation between the stationary mean delay per vehicle and the stationary mean queue-length at the beginning of a red period of the traffic light. Haight (1959) and Buckley and Wheeler (1964) considered models with Poisson arrivals and regular departure headways and investigated certain properties of the queue-length. Newell (1960) dealt with the model proposed by the first authors and obtained the probability generating function of the stationary queue-length distribution. Darroch (1964) discussed a more general discrete time model with stationary, independent arrivals and regular departure headways and derived a necessary and sufficient condition for the stationary queue-length distribution to exist and obtained its probability generating function. The above two authors, Little (1961), Miller (1963), Newell (1965), McNeil (1968), Siskind (1970) and others gave approximate expressions for the stationary mean delay per vehicle for fixed-cycle traffic light queues of various types. All of the authors mentioned above dealt with the queue-length.


2008 ◽  
Vol 40 (2) ◽  
pp. 548-577 ◽  
Author(s):  
David Gamarnik ◽  
Petar Momčilović

We consider a multiserver queue in the Halfin-Whitt regime: as the number of serversngrows without a bound, the utilization approaches 1 from below at the rateAssuming that the service time distribution is lattice valued with a finite support, we characterize the limiting scaled stationary queue length distribution in terms of the stationary distribution of an explicitly constructed Markov chain. Furthermore, we obtain an explicit expression for the critical exponent for the moment generating function of a limiting stationary queue length. This exponent has a compact representation in terms of three parameters: the amount of spare capacity and the coefficients of variation of interarrival and service times. Interestingly, it matches an analogous exponent corresponding to a single-server queue in the conventional heavy-traffic regime.


2000 ◽  
Vol 37 (04) ◽  
pp. 1092-1098
Author(s):  
Olivier Brun ◽  
Jean-Marie Garcia

Although the M/D/1/N queueing model is well solved from a computational point of view, there is no known analytical expression of the queue length distribution. In this paper, we derive closed-form formulae for the distribution of the number of customers in the system in the finite-capacity M/D/1 queue. We also give an explicit solution for the mean queue length and the average waiting time.


Sign in / Sign up

Export Citation Format

Share Document