Ordering results for smallest claim amounts from two portfolios of risks with dependent heterogeneous exponentiated location-scale claims

Author(s):  
Sangita Das ◽  
Suchandan Kayal ◽  
N. Balakrishnan

Abstract Let $\{Y_{1},\ldots ,Y_{n}\}$ be a collection of interdependent nonnegative random variables, with $Y_{i}$ having an exponentiated location-scale model with location parameter $\mu _i$ , scale parameter $\delta _i$ and shape (skewness) parameter $\beta _i$ , for $i\in \mathbb {I}_{n}=\{1,\ldots ,n\}$ . Furthermore, let $\{L_1^{*},\ldots ,L_n^{*}\}$ be a set of independent Bernoulli random variables, independently of $Y_{i}$ 's, with $E(L_{i}^{*})=p_{i}^{*}$ , for $i\in \mathbb {I}_{n}.$ Under this setup, the portfolio of risks is the collection $\{T_{1}^{*}=L_{1}^{*}Y_{1},\ldots ,T_{n}^{*}=L_{n}^{*}Y_{n}\}$ , wherein $T_{i}^{*}=L_{i}^{*}Y_{i}$ represents the $i$ th claim amount. This article then presents several sufficient conditions, under which the smallest claim amounts are compared in terms of the usual stochastic and hazard rate orders. The comparison results are obtained when the dependence structure among the claim severities are modeled by (i) an Archimedean survival copula and (ii) a general survival copula. Several examples are also presented to illustrate the established results.

1996 ◽  
Vol 33 (02) ◽  
pp. 285-310 ◽  
Author(s):  
Claude Lefèvre ◽  
Sergey Utev

The paper is first concerned with a comparison of the partial sums associated with two sequences of n exchangeable Bernoulli random variables. It then considers a situation where such partial sums are obtained through an iterative procedure of branching type stopped at the first-passage time in a linearly decreasing upper barrier. These comparison results are illustrated with applications to certain urn models, sampling schemes and epidemic processes. A key tool is a non-standard hierarchical class of stochastic orderings between discrete random variables valued in {0, 1,· ··, n}.


2004 ◽  
Vol 41 (01) ◽  
pp. 73-82 ◽  
Author(s):  
Philip J. Boland ◽  
Harshinder Singh ◽  
Bojan Cukic

Stratified and simple random sampling (or testing) are two common methods used to investigate the number or proportion of items in a population with a particular attribute. Although it is known that cost factors and information about the strata in the population are often crucial in deciding whether to use stratified or simple random sampling in a given situation, the stochastic precedence ordering for random variables can also provide the basis for an interesting criteria under which these methods may be compared. It may be particularly relevant when we are trying to find as many special items as possible in a population (for example individuals with a disease in a country). Properties of this total stochastic order on the class of random variables are discussed, and necessary and sufficient conditions are established which allow the comparison of the number of items of interest found in stratified random sampling with the number found in simple random sampling in the stochastic precedence order. These conditions are compared with other results established on stratified and simple random sampling (testing) using different stochastic-order-type criteria, and applications are given for the comparison of sums of Bernoulli random variables and binomial distributions.


2004 ◽  
Vol 41 (1) ◽  
pp. 73-82 ◽  
Author(s):  
Philip J. Boland ◽  
Harshinder Singh ◽  
Bojan Cukic

Stratified and simple random sampling (or testing) are two common methods used to investigate the number or proportion of items in a population with a particular attribute. Although it is known that cost factors and information about the strata in the population are often crucial in deciding whether to use stratified or simple random sampling in a given situation, the stochastic precedence ordering for random variables can also provide the basis for an interesting criteria under which these methods may be compared. It may be particularly relevant when we are trying to find as many special items as possible in a population (for example individuals with a disease in a country). Properties of this total stochastic order on the class of random variables are discussed, and necessary and sufficient conditions are established which allow the comparison of the number of items of interest found in stratified random sampling with the number found in simple random sampling in the stochastic precedence order. These conditions are compared with other results established on stratified and simple random sampling (testing) using different stochastic-order-type criteria, and applications are given for the comparison of sums of Bernoulli random variables and binomial distributions.


2021 ◽  
Vol 58 (4) ◽  
pp. 1064-1085
Author(s):  
Yiying Zhang

AbstractThis paper investigates the ordering properties of largest claim amounts in heterogeneous insurance portfolios in the sense of some transform orders, including the convex transform order and the star order. It is shown that the largest claim amount from a set of independent and heterogeneous exponential claims is more skewed than that from a set of independent and homogeneous exponential claims in the sense of the convex transform order. As a result, a lower bound for the coefficient of variation of the largest claim amount is established without any restrictions on the parameters of the distributions of claim severities. Furthermore, sufficient conditions are presented to compare the skewness of the largest claim amounts from two sets of independent multiple-outlier scaled claims according to the star order. Some comparison results are also developed for the multiple-outlier proportional hazard rates claims. Numerical examples are presented to illustrate these theoretical results.


1996 ◽  
Vol 33 (2) ◽  
pp. 285-310 ◽  
Author(s):  
Claude Lefèvre ◽  
Sergey Utev

The paper is first concerned with a comparison of the partial sums associated with two sequences of n exchangeable Bernoulli random variables. It then considers a situation where such partial sums are obtained through an iterative procedure of branching type stopped at the first-passage time in a linearly decreasing upper barrier. These comparison results are illustrated with applications to certain urn models, sampling schemes and epidemic processes. A key tool is a non-standard hierarchical class of stochastic orderings between discrete random variables valued in {0, 1,· ··, n}.


1986 ◽  
Vol 23 (04) ◽  
pp. 1013-1018
Author(s):  
B. G. Quinn ◽  
H. L. MacGillivray

Sufficient conditions are presented for the limiting normality of sequences of discrete random variables possessing unimodal distributions. The conditions are applied to obtain normal approximations directly for the hypergeometric distribution and the stationary distribution of a special birth-death process.


Filomat ◽  
2017 ◽  
Vol 31 (16) ◽  
pp. 5217-5239 ◽  
Author(s):  
Ravi Agarwal ◽  
Snehana Hristova ◽  
Donal O’Regan

In this paper the statement of initial value problems for fractional differential equations with noninstantaneous impulses is given. These equations are adequate models for phenomena that are characterized by impulsive actions starting at arbitrary fixed points and remaining active on finite time intervals. Strict stability properties of fractional differential equations with non-instantaneous impulses by the Lyapunov approach is studied. An appropriate definition (based on the Caputo fractional Dini derivative of a function) for the derivative of Lyapunov functions among the Caputo fractional differential equations with non-instantaneous impulses is presented. Comparison results using this definition and scalar fractional differential equations with non-instantaneous impulses are presented and sufficient conditions for strict stability and uniform strict stability are given. Examples are given to illustrate the theory.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 981
Author(s):  
Patricia Ortega-Jiménez ◽  
Miguel A. Sordo ◽  
Alfonso Suárez-Llorens

The aim of this paper is twofold. First, we show that the expectation of the absolute value of the difference between two copies, not necessarily independent, of a random variable is a measure of its variability in the sense of Bickel and Lehmann (1979). Moreover, if the two copies are negatively dependent through stochastic ordering, this measure is subadditive. The second purpose of this paper is to provide sufficient conditions for comparing several distances between pairs of random variables (with possibly different distribution functions) in terms of various stochastic orderings. Applications in actuarial and financial risk management are given.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 730
Author(s):  
Ravi Agarwal ◽  
Snezhana Hristova ◽  
Donal O’Regan

In this paper a system of nonlinear Riemann–Liouville fractional differential equations with non-instantaneous impulses is studied. We consider a Riemann–Liouville fractional derivative with a changeable lower limit at each stop point of the action of the impulses. In this case the solution has a singularity at the initial time and any stop time point of the impulses. This leads to an appropriate definition of both the initial condition and the non-instantaneous impulsive conditions. A generalization of the classical Lipschitz stability is defined and studied for the given system. Two types of derivatives of the applied Lyapunov functions among the Riemann–Liouville fractional differential equations with non-instantaneous impulses are applied. Several sufficient conditions for the defined stability are obtained. Some comparison results are obtained. Several examples illustrate the theoretical results.


1996 ◽  
Vol 33 (01) ◽  
pp. 146-155 ◽  
Author(s):  
K. Borovkov ◽  
D. Pfeifer

In this paper we consider improvements in the rate of approximation for the distribution of sums of independent Bernoulli random variables via convolutions of Poisson measures with signed measures of specific type. As a special case, the distribution of the number of records in an i.i.d. sequence of length n is investigated. For this particular example, it is shown that the usual rate of Poisson approximation of O(1/log n) can be lowered to O(1/n 2). The general case is discussed in terms of operator semigroups.


Sign in / Sign up

Export Citation Format

Share Document