Parametric surfaces

Author(s):  
A. S. Besicovitch

We shall first give some definitions concerning parametric surfaces. Denote by H a closed circle (disk) and by M a variable point on it. Let P = Ф(M) be a continuous function on H whose value P is a point in three-dimensional space. The symbols Ф(E), Ф−1(P), where E is a set of points on H and P a point in the three-dimensional space, will have their usual meaning. Ф−1(P) is a closed set. Any saturated continuum in Ф−1(P) or any point of Ф−1(P) that does not belong to such continua is called a Ф-element of H. Thus to any continuous function Ф(M) corresponds a representation of H in the form of the sum σQ of Ф-elements. The set of the pairs (P, Q), where Q runs through all Ф-elements of H and, for any Q, P = Ф(Q), is called a parametric surface, and any pair (P, Q) is called a point of the parametric surface. We shall often speak of a point Ф(M) of the parametric surface, by which we shall mean either the point (P, Q), where P = Ф(M) and Q is the Ф-element containing M, or the point P = Ф(M) of the three-dimensional space. The exact meaning will always be clear from the context. If there are exactly k points of the parametric surface whose first member is P0 we say that P0 is a point of multiplicity k. If k = 1, P0 is a simple point.

Author(s):  
Zh. Nikoghosyan ◽  

In axiomatic formulations, every two points lie in a (straight) line, every three points lie in a plane and every four points lie in a three-dimensional space (3-space). In this paper we show that every five points lie in a 3-space as well, implying that every set of points lie in a 3-space. In other words, the 3-space occupies the entire space. The proof is based on the following four axioms: 1) every two distinct points define a unique line, 2) every three distinct points, not lying on the line, define a unique plane, 3) if 𝐴 and 𝐵 are two distinct points in a 3-space, then the line defined by the points 𝐴, 𝐵, entirely lies in this 3-space, 4) if 𝐹1, 𝐹2, 𝐹3 are three distinct points in a 3-space, not lying in a line, then the plane defined by the points 𝐹1, 𝐹2, 𝐹3, lies entirely in this 3-space.


1997 ◽  
Vol 84 (1) ◽  
pp. 176-178
Author(s):  
Frank O'Brien

The author's population density index ( PDI) model is extended to three-dimensional distributions. A derived formula is presented that allows for the calculation of the lower and upper bounds of density in three-dimensional space for any finite lattice.


2019 ◽  
Author(s):  
Jumpei Morimoto ◽  
Yasuhiro Fukuda ◽  
Takumu Watanabe ◽  
Daisuke Kuroda ◽  
Kouhei Tsumoto ◽  
...  

<div> <div> <div> <p>“Peptoids” was proposed, over decades ago, as a term describing analogs of peptides that exhibit better physicochemical and pharmacokinetic properties than peptides. Oligo-(N-substituted glycines) (oligo-NSG) was previously proposed as a peptoid due to its high proteolytic resistance and membrane permeability. However, oligo-NSG is conformationally flexible and is difficult to achieve a defined shape in water. This conformational flexibility is severely limiting biological application of oligo-NSG. Here, we propose oligo-(N-substituted alanines) (oligo-NSA) as a new peptoid that forms a defined shape in water. A synthetic method established in this study enabled the first isolation and conformational study of optically pure oligo-NSA. Computational simulations, crystallographic studies and spectroscopic analysis demonstrated the well-defined extended shape of oligo-NSA realized by backbone steric effects. The new class of peptoid achieves the constrained conformation without any assistance of N-substituents and serves as an ideal scaffold for displaying functional groups in well-defined three-dimensional space, which leads to effective biomolecular recognition. </p> </div> </div> </div>


Author(s):  
Raimo Hartmann ◽  
Hannah Jeckel ◽  
Eric Jelli ◽  
Praveen K. Singh ◽  
Sanika Vaidya ◽  
...  

AbstractBiofilms are microbial communities that represent a highly abundant form of microbial life on Earth. Inside biofilms, phenotypic and genotypic variations occur in three-dimensional space and time; microscopy and quantitative image analysis are therefore crucial for elucidating their functions. Here, we present BiofilmQ—a comprehensive image cytometry software tool for the automated and high-throughput quantification, analysis and visualization of numerous biofilm-internal and whole-biofilm properties in three-dimensional space and time.


i-com ◽  
2020 ◽  
Vol 19 (2) ◽  
pp. 67-85
Author(s):  
Matthias Weise ◽  
Raphael Zender ◽  
Ulrike Lucke

AbstractThe selection and manipulation of objects in Virtual Reality face application developers with a substantial challenge as they need to ensure a seamless interaction in three-dimensional space. Assessing the advantages and disadvantages of selection and manipulation techniques in specific scenarios and regarding usability and user experience is a mandatory task to find suitable forms of interaction. In this article, we take a look at the most common issues arising in the interaction with objects in VR. We present a taxonomy allowing the classification of techniques regarding multiple dimensions. The issues are then associated with these dimensions. Furthermore, we analyze the results of a study comparing multiple selection techniques and present a tool allowing developers of VR applications to search for appropriate selection and manipulation techniques and to get scenario dependent suggestions based on the data of the executed study.


2021 ◽  
Vol 1111 (1) ◽  
pp. 012034
Author(s):  
N A Maksimov ◽  
K Zhigalov ◽  
A V Gorban ◽  
I V Ignatev

Sign in / Sign up

Export Citation Format

Share Document