Stochastic processes relating to particles distributed in a continuous infinity of states

Author(s):  
Alladi Ramakrishnan

Many stochastic problems arise in physics where we have to deal with a stochastic variable representing the number of particles distributed in a continuous infinity of states characterized by a parameter E, and this distribution varies with another parameter t (which may be continuous or discrete; if t represents time or thickness it is of course continuous). This variation occurs because of transitions characteristic of the stochastic process under consideration. If the E-space were discrete and the states represented by E1, E2, …, then it would be possible to define a functionrepresenting the probability that there are ν1 particles in E1, ν2 particles in E2, …, at t. The variation of π with t is governed by the transitions defined for the process; ν1, ν2, … are thus stochastic variables, and it is possible to study the moments or the distribution function of the sum of such stochastic variableswith the help of the π function which yields also the correlation between the stochastic variables νi.

1963 ◽  
Vol 2 (3) ◽  
pp. 387-390 ◽  
Author(s):  
Gunnar Benktander

In the classical definition skewness is departure from symmetry. It was therefore natural to measure skewness by using a normalized third moment μ3/σ3. This condensed measure, however, is not refined enough to be used as an operational instrument for studying various functions which might be used to describe actual claim distributions. This is true especially when the interest is concentrated towards the higher values of the variate.In their paper (1) Benktander-Segerdahl have suggested that the average excess claim m(x) as a function of the priority x should be used to reveal the characteristics of the tail of the distribution where P(x) = 1 — H(x) denotes the distribution function.This statistic is very apt when comparing actual claim distributions with possible theoretical models. It is also useful when classifying these models.If, however, emphasis mainly is laid on classifying distributions according to their skewness, another statistic might be preferable. Let μ(x)dx denote the probability that a stochastic variable which is known to be at least equal to x, does not exceed x+dx. In other words, μ(x)dx represents the probability that a claim or the corresponding stochastic variable, which, when observed from the bottom, is “alive” at x, “dies” in the interval (x, x + dx). The lower this claims rate of mortality, the skewer and more dangerous is the claim distribution.


2016 ◽  
Vol 8 (4) ◽  
pp. 144
Author(s):  
Modou Ngom ◽  
Gane Samb Lo

<div>Let $X_{1,n} \leq .... \leq X_{n,n}$ be the order statistics associated with a sample $X_{1}, ...., X_{n}$ whose pertaining distribution function (\textit{df}) is $F$. We are concerned with the functional asymptotic behaviour of the sequence of stochastic processes</div><div> </div><div>\begin{equation}<br />T_{n}(f,s)=\sum_{j=1}^{j=k}f(j)\left( \log X_{n-j+1,n}-\log<br />X_{n-j,n}\right)^{s} ,  \label{fme}<br />\end{equation}</div><div> </div><div>indexed by some classes $\mathcal{F}$ of functions $f:\mathbb{N}%^{\ast}\longmapsto \mathbb{R}_{+}$ and $s \in ]0,+\infty[$ and where $k=k(n)$ satisfies</div><div> </div><div>\begin{equation*}<br />1\leq k\leq n,k/n\rightarrow 0\text{ as }n\rightarrow \infty .<br />\end{equation*}</div><div> </div><div>We show that this is a stochastic process whose margins generate estimators of the extreme value index when $F$ is in the extreme domain of attraction. We focus in this paper on its finite-dimension asymptotic law and provide a class of new estimators of the extreme value index whose performances are compared to analogous ones. The results are next particularized for one explicit class $\mathcal{F}$.</div>


1971 ◽  
Vol 8 (04) ◽  
pp. 716-723 ◽  
Author(s):  
A. E. Gibson ◽  
B. W. Conolly

Consider the real-valued stochastic process {S(t), 0 ≦ t &lt; ∞} which assumes values in an arbitrary space X. For a given subset T ⊂ X we define which represents the length in time of a visit to state T. We shall restrict ourselves to processes such that τT is a random variable having a differentiable distribution function which is independent of the time t 0 at which the visit to state T begins.


1952 ◽  
Vol 48 (3) ◽  
pp. 451-456 ◽  
Author(s):  
Alladi Ramakrishnan

In a contribution (3) to these Proceedings the author considered stochastic problems in physics where one had to deal with a stochastic variable representing the number of particles distributed in a continuous infinity of states characterized by a parameter E, and where the distribution varied with another parameter t which might be continuous or discrete (if t represents time or thickness, it is of course continuous). The author introduced the concept of product densities and derived some general results relating to the functions representing these densities. Recently, Janossy(2), using a certain mathematical model for a nuclear cascade, introduced certain functions which bear a close relation to the product-density functions. The object of this note is to establish a complete correspondence between these two sets of functions and apply them to the specific problem of the development of a nucleon cascade. The diffusion equations involving product densities can be derived from the diffusion equations involving Janossy's functions.


1971 ◽  
Vol 8 (4) ◽  
pp. 716-723 ◽  
Author(s):  
A. E. Gibson ◽  
B. W. Conolly

Consider the real-valued stochastic process {S(t), 0 ≦ t < ∞} which assumes values in an arbitrary space X. For a given subset T ⊂ X we define which represents the length in time of a visit to state T. We shall restrict ourselves to processes such that τT is a random variable having a differentiable distribution function which is independent of the time t0 at which the visit to state T begins.


Author(s):  
Walter L. Smith

The power and appropriateness of renewal theory as a tool for the solution of general problems concerning counters has been amply demonstrated by Feller (7), who considered a variety of counter problems and reduced them to special renewal processes. The use of what may be called renewal-type arguments had certainly been made by authors other than Feller (e.g. in § 3 of Domb (3)), but it was only in (7) that the simplicity of the renewal approach to counter problems was recognized and systematically applied. More recently, Hammersley (8) was concerned with the generalization of a counter problem previously studied by Domb (2). This problem may be introduced, mathematically, as follows. Let {xi}, {yi} be two independent sequences of independent non-negative random variables which are non-zero with probability one (i.e. two independent renewal processes). The {xi}, are distributed in a negative-exponential distribution with mean λ-1, and we write Eλ for their distribution function and say ≡ {xi} is a Poisson process to imply this special property of ; the {yi} have a distribution function ‡ B(x) with mean b1 ≤ ∞. Form the partial sums and define ni to be the greatest integer k such that Xk ≥ t, taking X0 0 and nt = 0 if x1 > t. Then define the stochastic processHammersley'sx counter problem concerns the stochastic process


1988 ◽  
Vol 103 (2) ◽  
pp. 367-370 ◽  
Author(s):  
Ron C. Blei ◽  
J.-P. Kahane

A stochastic process X = {X(t): t ∈ [0, 1]} on a probability space (Ω, , ℙ) is said to have finite expectation if the function defined on the measureable rectangles in Ω × [0, 1] byfor A ∈ and (s, t) ⊂ [0, 1] gives rise to a complex measure in each of its two coordinates (see [1], definition 1·1). Equivalently, X has finite expectation ifis finite. The function defined by (1), effectively a generalization of the Doléans measure (see e.g. [4] pp. 33–35), is extendible to a bona fide complex measure on Ω × [0, 1] if and only if its ‘total variation’


Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter covers the equations governing the evolution of particle distribution and relates the macroscopic thermodynamical quantities to the distribution function. The motion of N particles is governed by 6N equations of motion of first order in time, written in either Hamiltonian form or in terms of Poisson brackets. Thus, as this chapter shows, as the number of particles grows it becomes necessary to resort to a statistical description. The chapter first introduces the Liouville equation, which states the conservation of the probability density, before turning to the Boltzmann–Vlasov equation. Finally, it discusses the Jeans equations, which are the equations obtained by taking various averages over velocities.


2007 ◽  
Vol 2007 ◽  
pp. 1-5 ◽  
Author(s):  
Chunsheng Ma

This paper is concerned with a class of stochastic processes or random fields with second-order increments, whose variograms have a particular form, among which stochastic processes having orthogonal increments on the real line form an important subclass. A natural issue, how big this subclass is, has not been explicitly addressed in the literature. As a solution, this paper characterizes a stochastic process having orthogonal increments on the real line in terms of its variogram or its construction. Our findings are a little bit surprising: this subclass is big in terms of the variogram, and on the other hand, it is relatively “small” according to a simple construction. In particular, every such process with Gaussian increments can be simply constructed from Brownian motion. Using the characterizations we obtain a series expansion of the stochastic process with orthogonal increments.


1958 ◽  
Vol 10 ◽  
pp. 222-229 ◽  
Author(s):  
J. R. Blum ◽  
H. Chernoff ◽  
M. Rosenblatt ◽  
H. Teicher

Let {Xn} (n = 1, 2 , …) be a stochastic process. The random variables comprising it or the process itself will be said to be interchangeable if, for any choice of distinct positive integers i 1, i 2, H 3 … , ik, the joint distribution of depends merely on k and is independent of the integers i 1, i 2, … , i k. It was shown by De Finetti (3) that the probability measure for any interchangeable process is a mixture of probability measures of processes each consisting of independent and identically distributed random variables.


Sign in / Sign up

Export Citation Format

Share Document