scholarly journals The irrotational solution of an elliptic differential equation with an unknown coefficient

1963 ◽  
Vol 59 (3) ◽  
pp. 680-682 ◽  
Author(s):  
J. R. cannon ◽  
J. H. Halton

Let G be a bounded region in k-dimensional space, with boundary Γ, such that the Laplace equation,is uniquely soluble (to within an added constant) under the Neumann boundary conditionswhere ∂/∂n denotes outward normal differentiation on Γ, and it is assumed that h is a function in G ∪ ∂, and thus that g is a function on ∂. In what follows, we shall assume certain properties of the solution h: these are all well known (see, for example, Osgood(l) or Courant(2)).

Author(s):  
J. Solà-Morales ◽  
M. València

SynopsisThe semilinear damped wave equationssubject to homogeneous Neumann boundary conditions, admit spatially homogeneous solutions (i.e. u(x, t) = u(t)). In order that every solution tends to a spatially homogeneous one, we look for conditions on the coefficients a and d, and on the Lipschitz constant of f with respect to u.


1988 ◽  
Vol 40 (2) ◽  
pp. 502-512 ◽  
Author(s):  
Richard Beals ◽  
Nancy K. Stanton

Let Ω be a compact complex n + 1-dimensional Hermitian manifold with smooth boundary M. In [2] we proved the following.THEOREM 1. Suppose satisfies condition Z(q) with 0 ≦ q ≦ n. Let □p,q denote the -Laplacian on (p, q) forms onwhich satisfy the -Neumann boundary conditions. Then as t → 0;,(0.1)(If q = n + 1, the -Neumann boundary condition is the Dirichlet boundary condition and the corresponding result is classical.)Theorem 1 is a version for the -Neumann problem of results initiated by Minakshisundaram and Pleijel [8] for the Laplacian on compact manifolds and extended by McKean and Singer [7] to the Laplacian with Dirichlet or Neumann boundary conditions and by Greiner [5] and Seeley [9] to elliptic boundary value problems on compact manifolds with boundary. McKean and Singer go on to show that the coefficients in the trace expansion are integrals of local geometric invariants.


Author(s):  
Johannes Lankeit

This paper deals with the logistic Keller–Segel model \[ \begin{cases} u_t = \Delta u - \chi \nabla\cdot(u\nabla v) + \kappa u - \mu u^2, \\ v_t = \Delta v - v + u \end{cases} \] in bounded two-dimensional domains (with homogeneous Neumann boundary conditions and for parameters χ, κ ∈ ℝ and μ > 0), and shows that any nonnegative initial data (u0, v0) ∈ L1 × W1,2 lead to global solutions that are smooth in $\bar {\Omega }\times (0,\infty )$ .


2014 ◽  
Vol 4 (3) ◽  
pp. 222-241 ◽  
Author(s):  
Seakweng Vong ◽  
Zhibo Wang

AbstractA compact finite difference scheme is derived for a time fractional differential equation subject to Neumann boundary conditions. The proposed scheme is second-order accurate in time and fourth-order accurate in space. In addition, a high order alternating direction implicit (ADI) scheme is also constructed for the two-dimensional case. The stability and convergence of the schemes are analysed using their matrix forms.


1993 ◽  
Vol 123 (6) ◽  
pp. 1031-1040 ◽  
Author(s):  
Antonio L. Pereira

SynopsisFor the reaction diffusion equationwith homogeneous Neumann boundary conditions, we give results on the generic hyperbolicity of equilibria with respect to a for fixed f and with respect to f for fixed a.


Author(s):  
Stéphane K. Lintner ◽  
Oscar P. Bruno

We deal with the general problem of scattering by open arcs in two-dimensional space. We show that this problem can be solved by means of certain second-kind integral equations of the form , where and are first-kind integral operators whose composition gives rise to a generalized Calderón formula of the form in a weighted, periodized Sobolev space. (Here is a continuous and continuously invertible operator and is a compact operator.) The formulation provides, for the first time, a second-kind integral equation for the open-arc scattering problem with Neumann boundary conditions. Numerical experiments show that, for both the Dirichlet and Neumann boundary conditions, our second-kind integral equations have spectra that are bounded away from zero and infinity as k → ∞; to the authors’ knowledge these are the first integral equations for these problems that possess this desirable property. This situation is in stark contrast with that arising from the related classical open-surface hypersingular and single-layer operators N and S, whose composition NS maps, for example, the function ϕ = 1 into a function that is not even square integrable. Our proofs rely on three main elements: algebraic manipulations enabled by the presence of integral weights; use of the classical result of continuity of the Cesàro operator; and explicit characterization of the point spectrum of , which, interestingly, can be decomposed into the union of a countable set and an open set, both of which are tightly clustered around . As shown in a separate contribution, the new approach can be used to construct simple, spectrally accurate numerical solvers and, when used in conjunction with Krylov-subspace iterative solvers such as the generalized minimal residual method, it gives rise to a dramatic reduction in the number of iterations compared with those required by other approaches.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Chengyuan Qu ◽  
Bo Liang

We study a slow diffusive -Laplace equation in a bounded domain with the Neumann boundary conditions. A natural energy is associated to the equation. It is shown that the solution blows up in finite time with the nonpositive initial energy, based on an energy technique. Furthermore, under some assumptions of initial data, we prove that the solutions with bounded initial energy also blow up.


Sign in / Sign up

Export Citation Format

Share Document