Congruence properties of the binary partition function

Author(s):  
R. F. Churchhouse

We denote by b(n) the number of ways of expressing the positive integer n as the sum of powers of 2 and we call b(n) ‘the binary partition function’. This function has been studied by Euler (1), Tanturri (2–4), Mahler (5), de Bruijn(6) and Pennington (7). Euler and Tanturri were primarily concerned with deriving formulae for the precise calculation of b(n), whereas Mahler deduced an asymptotic formula for log b(n) from his analysis of the functions satisfying a certain class of functional equations. De Bruijn and Pennington extended Mahler's work and obtained more precise results.

1975 ◽  
Vol 78 (3) ◽  
pp. 437-442 ◽  
Author(s):  
M. D. Hirschhorn ◽  
J. H. Loxton

We denote by b(n) the number of binary partitions of n, that is the number of partitions of n as the sum of powers of 2. As usual, two partitions are not considered to be distinct if they differ only in the order of their summands. It is convenient to define b(0) = 1.


Author(s):  
Öystein Rödseth

We denote by tm(n) the number of partitions of the positive integer n into non-decreasing parts which are positive or zero powers of a fixed integer m > 1 and we call tm(n) ‘the m-ary partition function’. Mahler(1) obtained an asymptotic formula for tm(n), the first term of which isMahler's result was later improved by de Bruijn (2).


Author(s):  
Ya-Li Li ◽  
Jie Wu

For any positive integer [Formula: see text], let [Formula: see text] be the number of solutions of the equation [Formula: see text] with integers [Formula: see text], where [Formula: see text] is the integral part of real number [Formula: see text]. Recently, Luca and Ralaivaosaona gave an asymptotic formula for [Formula: see text]. In this paper, we give an asymptotic development of [Formula: see text] for all [Formula: see text]. Moreover, we prove that the number of such partitions is even (respectively, odd) infinitely often.


2006 ◽  
Vol 02 (03) ◽  
pp. 455-468 ◽  
Author(s):  
ØYSTEIN J. RØDSETH ◽  
JAMES A. SELLERS

For a finite set A of positive integers, we study the partition function pA(n). This function enumerates the partitions of the positive integer n into parts in A. We give simple proofs of some known and unknown identities and congruences for pA(n). For n in a special residue class, pA(n) is a polynomial in n. We examine these polynomials for linear factors, and the results are applied to a restricted m-ary partition function. We extend the domain of pA and prove a reciprocity formula with supplement. In closing we consider an asymptotic formula for pA(n) and its refinement.


2013 ◽  
Vol 09 (04) ◽  
pp. 939-943 ◽  
Author(s):  
CRISTIAN-SILVIU RADU ◽  
JAMES A. SELLERS

In 2007, Andrews and Paule introduced the family of functions Δk(n) which enumerate the number of broken k-diamond partitions for a fixed positive integer k. In that paper, Andrews and Paule proved that, for all n ≥ 0, Δ1(2n+1) ≡ 0 (mod 3) using a standard generating function argument. Soon after, Shishuo Fu provided a combinatorial proof of this same congruence. Fu also utilized this combinatorial approach to naturally define a generalization of broken k-diamond partitions which he called k dots bracelet partitions. He denoted the number of k dots bracelet partitions of n by 𝔅k(n) and proved various congruence properties for these functions modulo primes and modulo powers of 2. In this note, we extend the set of congruences proven by Fu by proving the following congruences: For all n ≥ 0, [Formula: see text] We also conjecture an infinite family of congruences modulo powers of 7 which are satisfied by the function 𝔅7.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Carlo Sanna

AbstractFor every positive integer n and for every $$\alpha \in [0, 1]$$ α ∈ [ 0 , 1 ] , let $${\mathcal {B}}(n, \alpha )$$ B ( n , α ) denote the probabilistic model in which a random set $${\mathcal {A}} \subseteq \{1, \ldots , n\}$$ A ⊆ { 1 , … , n } is constructed by picking independently each element of $$\{1, \ldots , n\}$$ { 1 , … , n } with probability $$\alpha $$ α . Cilleruelo, Rué, Šarka, and Zumalacárregui proved an almost sure asymptotic formula for the logarithm of the least common multiple of the elements of $${\mathcal {A}}$$ A .Let q be an indeterminate and let $$[k]_q := 1 + q + q^2 + \cdots + q^{k-1} \in {\mathbb {Z}}[q]$$ [ k ] q : = 1 + q + q 2 + ⋯ + q k - 1 ∈ Z [ q ] be the q-analog of the positive integer k. We determine the expected value and the variance of $$X := \deg {\text {lcm}}\!\big ([{\mathcal {A}}]_q\big )$$ X : = deg lcm ( [ A ] q ) , where $$[{\mathcal {A}}]_q := \big \{[k]_q : k \in {\mathcal {A}}\big \}$$ [ A ] q : = { [ k ] q : k ∈ A } . Then we prove an almost sure asymptotic formula for X, which is a q-analog of the result of Cilleruelo et al.


Axioms ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 126
Author(s):  
Hong Li ◽  
Hongyan Xu

This article is to investigate the existence of entire solutions of several quadratic trinomial difference equations f(z+c)2+2αf(z)f(z+c)+f(z)2=eg(z), and the partial differential difference equations f(z+c)2+2αf(z+c)∂f(z)∂z1+∂f(z)∂z12=eg(z),f(z+c)2+2αf(z+c)∂f(z)∂z1+∂f(z)∂z2+∂f(z)∂z1+∂f(z)∂z22=eg(z). We establish some theorems about the forms of the finite order transcendental entire solutions of these functional equations. We also list a series of examples to explain the existence of the finite order transcendental entire solutions of such equations. Meantime, some examples show that there exists a very significant difference with the previous literature on the growth order of the finite order transcendental entire solutions. Our results show that some functional equations can admit the transcendental entire solutions with any positive integer order. These results make a few improvements of the previous theorems given by Xu and Cao, Liu and Yang.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Abasalt Bodaghi ◽  
Sang Og Kim

We obtain the general solution of the generalized mixed additive and quadratic functional equationfx+my+fx−my=2fx−2m2fy+m2f2y,mis even;fx+y+fx−y−2m2−1fy+m2−1f2y,mis odd, for a positive integerm. We establish the Hyers-Ulam stability for these functional equations in non-Archimedean normed spaces whenmis an even positive integer orm=3.


2019 ◽  
Vol 11 (02) ◽  
pp. 1950015
Author(s):  
Rafał Kapelko

Assume that [Formula: see text] mobile sensors are thrown uniformly and independently at random with the uniform distribution on the unit interval. We study the expected sum over all sensors [Formula: see text] from [Formula: see text] to [Formula: see text] where the contribution of the [Formula: see text] sensor is its displacement from the current location to the anchor equidistant point [Formula: see text] raised to the [Formula: see text] power, when [Formula: see text] is an odd natural number. As a consequence, we derive the following asymptotic identity. Fix [Formula: see text] positive integer. Let [Formula: see text] denote the [Formula: see text] order statistic from a random sample of size [Formula: see text] from the Uniform[Formula: see text] population. Then [Formula: see text] where [Formula: see text] is the Gamma function.


Sign in / Sign up

Export Citation Format

Share Document