Groups with many characteristically simple subgroups

1979 ◽  
Vol 86 (2) ◽  
pp. 193-198 ◽  
Author(s):  
J. S. Wilson

1. A group G is called characteristically simple if it has no proper non-trivial subgroups which are invariant under all automorphisms of G. It is known that if G is characteristically simple then each countable subgroup lies in a countable characteristically simple subgroup of G. A similar assertion holds for simple groups. These results were proved by Philip Hall in lectures in 1966, and further proofs appear in (4) and (6). For simple groups there is a well known and elementary result in the other direction: if every two-generator subgroup of a group G lies in a simple subgroup, then G is simple. These considerations prompt the question (first raised, I believe, by Philip Hall) whether a group G is necessarily characteristically simple if each countable subgroup lies in a characteristically simple subgroup.

1981 ◽  
Vol 1 (2) ◽  
pp. 237-253 ◽  
Author(s):  
Robert J. Zimmer

AbstractThe rigidity theorem for ergodic actions of semi-simple groups and their lattice subgroups provides results concerning orbit equivalence of the actions of these groups with finite invariant measure. The main point of this paper is to extend the rigidity theorem on one hand to actions of general Lie groups with finite invariant measure, and on the other to actions of lattices on homogeneous spaces of the ambient connected group possibly without invariant measure. For example, this enables us to deduce non-orbit equivalence results for the actions of SL (n, ℤ) on projective space, Euclidean space, and general flag and Grassman varieties.


2018 ◽  
Vol 15 (04) ◽  
pp. 1850060
Author(s):  
Koen Thas

Nearly every known pair of isospectral but nonisometric manifolds — with as most famous members isospectral bounded [Formula: see text]-planar domains which makes one “not hear the shape of a drum” [M. Kac, Can one hear the shape of a drum? Amer. Math. Monthly 73(4 part 2) (1966) 1–23] — arise from the (group theoretical) Gassmann–Sunada method. Moreover, all the known [Formula: see text]-planar examples (so counter examples to Kac’s question) are constructed through a famous specialization of this method, called transplantation. We first describe a number of very general classes of length equivalent manifolds, with as particular cases isospectral manifolds, in each of the constructions starting from a given example that arises itself from the Gassmann–Sunada method. The constructions include the examples arising from the transplantation technique (and thus in particular the known planar examples). To that end, we introduce four properties — called FF, MAX, PAIR and INV — inspired by natural physical properties (which rule out trivial constructions), that are satisfied for each of the known planar examples. Vice versa, we show that length equivalent manifolds with FF, MAX, PAIR and INV which arise from the Gassmann–Sunada method, must fall under one of our prior constructions, thus describing a precise classification of these objects. Due to the nature of our constructions and properties, a deep connection with finite simple groups occurs which seems, perhaps, rather surprising in the context of this paper. On the other hand, our properties define in some sense physically irreducible pairs of length equivalent manifolds — “atoms” of general pairs of length equivalent manifolds, in that such a general pair of manifolds is patched up out of irreducible pairs — and that is precisely what simple groups are for general groups.


1995 ◽  
Vol 37 (1) ◽  
pp. 69-71 ◽  
Author(s):  
Howard Smith

Given a group G and a positive integer k, let vk(G) denote the number of conjugacy classes of subgroups of G which are not subnormal of defect at most k. Groups G such that vkG) < ∝ for some k are considered in Section 2 of [1], and Theorem 2.4 of that paper states that an infinite group G for which vk(G) < ∝ (for some k) is nilpotent provided only that all chief factors of G are locally (soluble or finite). Now it is easy to see that a group G whose chief factors are of this type is locally graded, that is, every nontrivial, finitely generated subgroup F of G has a nontrivial finite image (since there is a chief factor H/K of G such that F is contained in H but not in K). On the other hand, every (locally) free group is locally graded and so there is in general no restriction on the chief factors of such groups. The class of locally graded groups is a suitable class to consider if one wishes to do no more than exclude the occurrence of finitely generated, infinite simple groups and, in particular, Tarski p-groups. As pointed out in [1], Ivanov and Ol'shanskiĭ have constructed (finitely generated) infinite simple groups all of whose proper nontrivial subgroups are conjugate; clearly a group G with this property satisfies v1(G) = l. The purpose of this note is to provide the following generalization of the above-mentioned theorem from [1].


1989 ◽  
Vol 106 (3) ◽  
pp. 423-429 ◽  
Author(s):  
R. T. Curtis

In the second half of the last century the French mathematician Emil Mathieu discovered two quintuply transitive permutation groups, now labelled M12 and M24, acting on twelve and twenty-four letters respectively. With the classification of finite simple groups complete we now know that any other quintuply transitive permutation group, on any number of letters, must contain the corresponding alternating group. Indeed, the only quadruply transitive groups, other than the alternating and symmetric groups, are the point stabilizers in M12 and M24, which are denoted by M11 and M23 respectively. To put it another way, the study of multiply (≥ 4-fold) transitive groups now means the study of the symmetric groups and the Mathieu groups. Apart from their beauty and interest in their own right the Mathieu groups are involved in many of the other sporadic simple groups: see ([2], p. 238). Thus a detailed understanding of the other exceptional groups necessitates an intimate knowledge of M12 and M24.


2016 ◽  
Vol 37 (4) ◽  
pp. 1133-1186 ◽  
Author(s):  
DARREN CREUTZ

We prove that any ergodic non-atomic probability-preserving action of an irreducible lattice in a semisimple group, with at least one factor being connected and of higher-rank, is essentially free. This generalizes the result of Stuck and Zimmer [Stabilizers for ergodic actions of higher rank semisimple groups. Ann. of Math. (2)139(3) (1994), 723–747], who found that the same statement holds when the ambient group is a semisimple real Lie group and every simple factor is of higher-rank. We also prove a generalization of a result of Bader and Shalom [Factor and normal subgroup theorems for lattices in products of groups. Invent. Math.163(2) (2006), 415–454] by showing that any probability-preserving action of a product of simple groups, with at least one having property $(T)$, which is ergodic for each simple subgroup, is either essentially free or essentially transitive. Our method involves the study of relatively contractive maps and the Howe–Moore property, rather than relying on algebraic properties of semisimple groups and Poisson boundaries, and introduces a generalization of the ergodic decomposition to invariant random subgroups, which is of independent interest.


1977 ◽  
Vol 18 (2) ◽  
pp. 167-173 ◽  
Author(s):  
N. K. Dickson

Much work has been carried out on the classification of finite simple groups in terms of the structures of centralisers of involutions. However, it is sometimes the case that these classification results cannot be applied to particular problems even although information is available about one conjugacy class of involutions. The trouble is that information about the other classes can be almost non-existent. In this paper we deal with a situation where character theory can be employed to give a strong connection between the orders of centralisers of different classes of involutions, enabling information about one class to be used to give information about other classes. We prove the following result.


1973 ◽  
Vol 16 (1) ◽  
pp. 87-92
Author(s):  
David Parrott

In the series of simple groups 2F4(q),q =2 2m+1, discovered by Ree, Tits [4] showed that the group 2F4(2) was not simple but contained a simple subgroup of index 2. In this note we extend the characterization of obtained by the author in [3].


1988 ◽  
Vol 62 (03) ◽  
pp. 411-419 ◽  
Author(s):  
Colin W. Stearn

Stromatoporoids are the principal framebuilding organisms in the patch reef that is part of the reservoir of the Normandville field. The reef is 10 m thick and 1.5 km2in area and demonstrates that stromatoporoids retained their ability to build reefal edifices into Famennian time despite the biotic crisis at the close of Frasnian time. The fauna is dominated by labechiids but includes three non-labechiid species. The most abundant species isStylostroma sinense(Dong) butLabechia palliseriStearn is also common. Both these species are highly variable and are described in terms of multiple phases that occur in a single skeleton. The other species described areClathrostromacf.C. jukkenseYavorsky,Gerronostromasp. (a columnar species), andStromatoporasp. The fauna belongs in Famennian/Strunian assemblage 2 as defined by Stearn et al. (1988).


1967 ◽  
Vol 28 ◽  
pp. 207-244
Author(s):  
R. P. Kraft

(Ed. note:Encouraged by the success of the more informal approach in Christy's presentation, we tried an even more extreme experiment in this session, I-D. In essence, Kraft held the floor continuously all morning, and for the hour and a half afternoon session, serving as a combined Summary-Introductory speaker and a marathon-moderator of a running discussion on the line spectrum of cepheids. There was almost continuous interruption of his presentation; and most points raised from the floor were followed through in detail, no matter how digressive to the main presentation. This approach turned out to be much too extreme. It is wearing on the speaker, and the other members of the symposium feel more like an audience and less like participants in a dissective discussion. Because Kraft presented a compendious collection of empirical information, and, based on it, an exceedingly novel series of suggestions on the cepheid problem, these defects were probably aggravated by the first and alleviated by the second. I am much indebted to Kraft for working with me on a preliminary editing, to try to delete the side-excursions and to retain coherence about the main points. As usual, however, all responsibility for defects in final editing is wholly my own.)


1967 ◽  
Vol 28 ◽  
pp. 177-206
Author(s):  
J. B. Oke ◽  
C. A. Whitney

Pecker:The topic to be considered today is the continuous spectrum of certain stars, whose variability we attribute to a pulsation of some part of their structure. Obviously, this continuous spectrum provides a test of the pulsation theory to the extent that the continuum is completely and accurately observed and that we can analyse it to infer the structure of the star producing it. The continuum is one of the two possible spectral observations; the other is the line spectrum. It is obvious that from studies of the continuum alone, we obtain no direct information on the velocity fields in the star. We obtain information only on the thermodynamic structure of the photospheric layers of these stars–the photospheric layers being defined as those from which the observed continuum directly arises. So the problems arising in a study of the continuum are of two general kinds: completeness of observation, and adequacy of diagnostic interpretation. I will make a few comments on these, then turn the meeting over to Oke and Whitney.


Sign in / Sign up

Export Citation Format

Share Document