Attenuation of elastic waves in a cracked, fluid-saturated solid

Author(s):  
A. K. Chatterjee ◽  
A. K. Mal ◽  
L. Knopoff ◽  
J. A. Hudson

AbstractThe problem of the determination of the overall dynamic elastic moduli of an elastic solid permeated by uniformly distributed penny-shaped cracks is considered. The cracks are assumed to be filled with a viscoelastic material. The orientations of the cracks may be either parallel or perfectly random. The overall velocities as well as the specific attenuation coefficients of plane harmonic compressional and shear waves are calculated for low frequencies and dilute concentration of the cracks.

2020 ◽  
pp. 44-53
Author(s):  
A. V. Kozlov

The method of determination of elastic moduli for different materials by means of measuring of longitudinal and shear waves’ velocities is discussed in the paper. The velocities are measured by obtaining the time of flight between a pair of low frequency ultrasonic dry point contact transducers installed on the surface of the studied material sample. Factors defining the accuracy of such measurement are indicated which mainly consist of physical velocity frequency dispersion, fundamental although small differences between static and dynamic elastic moduli measurements, velocity dependence on temperature etc. Comparison between Young’s modulus and Poisson’s ratio, obtained experimentally and from table data, is given for various plastics and steel samples. It shows good agreement of different methods’ data and demonstrates the applicability of the suggested elastic moduli ultrasonic sub-surface measurement method.


Geophysics ◽  
1962 ◽  
Vol 27 (3) ◽  
pp. 327-333 ◽  
Author(s):  
J. E. White

This paper concerns axially symmetric solutions for waves propagating along a cylinder in an infinite elastic solid. Solutions are presented describing unattenuated propagation along the axis at phase velocities higher than shear and compressional speeds in the solid, in contradiction to earlier publications. Special attention is given to the limiting case of phase velocity equal to compressional speed in the solid, which at low frequencies very closely approximates the coupling of a fluid‐filled borehole to a plane compressional wave in the surrounding solid. Comparison with some experiments in a uniform section of Pierre shale show excellent agreement at low frequencies. In the low‐frequency limit, these solutions reduce to an approximate expression for borehole coupling published earlier by the author.


2020 ◽  
Vol 23 (2) ◽  
pp. 535-545
Author(s):  
Mezgeen Ahmed ◽  
◽  
Abdulhameed Yaseen ◽  
Yaman Al-kamaki ◽  
Fouad Mohammad ◽  
...  

Author(s):  
A. K. Mal ◽  
S. K. Bose

AbstractAn isotropic elastic material containing a random distribution of identical spherical particles of another elastic material is considered. The bonding between the spheres and the matrix is imperfect, so that slip may occur at interfaces when stress is applied to the medium. The shear stresses at the interface is assumed to be proportional to the amount of slip. The velocity and attenuation of the average harmonic elastic waves propagating through such a medium are calculated. The results are valid to the lowest order in frequency for wave lengths long compared with the radius of the sphere. The dynamic elastic moduli are obtained from these results and are compared with available results for welded contact. The variations in the P and S wave velocities for propagation across earthquake faults is discussed.


Sign in / Sign up

Export Citation Format

Share Document