ELASTIC WAVES ALONG A CYLINDRICAL BORE

Geophysics ◽  
1962 ◽  
Vol 27 (3) ◽  
pp. 327-333 ◽  
Author(s):  
J. E. White

This paper concerns axially symmetric solutions for waves propagating along a cylinder in an infinite elastic solid. Solutions are presented describing unattenuated propagation along the axis at phase velocities higher than shear and compressional speeds in the solid, in contradiction to earlier publications. Special attention is given to the limiting case of phase velocity equal to compressional speed in the solid, which at low frequencies very closely approximates the coupling of a fluid‐filled borehole to a plane compressional wave in the surrounding solid. Comparison with some experiments in a uniform section of Pierre shale show excellent agreement at low frequencies. In the low‐frequency limit, these solutions reduce to an approximate expression for borehole coupling published earlier by the author.

Author(s):  
A. K. Chatterjee ◽  
A. K. Mal ◽  
L. Knopoff ◽  
J. A. Hudson

AbstractThe problem of the determination of the overall dynamic elastic moduli of an elastic solid permeated by uniformly distributed penny-shaped cracks is considered. The cracks are assumed to be filled with a viscoelastic material. The orientations of the cracks may be either parallel or perfectly random. The overall velocities as well as the specific attenuation coefficients of plane harmonic compressional and shear waves are calculated for low frequencies and dilute concentration of the cracks.


1972 ◽  
Vol 39 (4) ◽  
pp. 995-1001 ◽  
Author(s):  
S. K. Datta

A low-frequency analysis is presented here for the axisymmetric problem of diffraction of torsional waves by an oblate spheroidal cavity in an isotropic homogeneous elastic medium. The method used gives a complete low-frequency expansion of the scattered field in terms of associated Legendre functions, instead of spheroidal wave functions that one gets by the method of separation of variables. This makes the numerical computation much simpler. Graphs and tables are presented for the displacement distribution on the cavity surface and the nonzero shear stress at the end of the major axis of the spheroid. It is found that for low frequencies and for the values of the ratio (b/a) of the minor and major axes of the spheroid considered here the absolute value of the ratio of the nonzero dynamic and static shear stress evaluated at the end of the major axis is independent of b/a for confocal spheroids. An estimate is also given for the radius of convergence of the low-frequency expansion.


1967 ◽  
Vol 34 (4) ◽  
pp. 915-920 ◽  
Author(s):  
S. A. Thau ◽  
Yih-Hsing Pao

The dynamic response, including the stresses at the surface, of a rigid parabolic cylinder in an infinite elastic solid is studied for an incident plane compressional wave. The method of separation of variables in parabolic coordinates is used. With the wave function for one of the scattered waves expanded into a series of those for the other wave, the total scattered fields are then determined numerically by inverting a truncated infinite matrix. The same problem is solved also by a recently developed method of perturbation which describes the two waves in elastic solids in terms of wave functions with a common wave speed. With the latter method, the total scattered waves are determined analytically for the various orders of perturbation, and these results supplement the numerical wave function expansion results in the low-frequency range.


2006 ◽  
Vol 24 (10) ◽  
pp. 2441-2444 ◽  
Author(s):  
Y. Narita ◽  
K.-H. Glassmeier

Abstract. Propagation pattern (distribution of phase velocities) is determined in three dimensions in the terrestrial magnetosheath on a statistical basis using Cluster spacecraft observations. It is found that the anti-sunward propagation dominates and that the propagation direction is toward the magnetosheath flank at smaller zenith angles, while it is toward the magnetopause at larger angles. This pattern is axially symmetric regardless of the interplanetary magnetic field direction and agrees qualitatively with the density gradient directions in a hydromagnetic flow model of the magnetosheath, suggesting that the wave refraction mechanism is more significant than the wave drift effect.


1967 ◽  
Vol 34 (1) ◽  
pp. 104-110 ◽  
Author(s):  
R. A. Scott ◽  
Julius Miklowitz

The equations of motion of a linear elastic solid have been used to study the propagation of transient compressional disturbances in anisotropic plates, generated by several types of surface and edge loadings. A particular orientation of the axes of material symmetry was chosen, and several classes of anisotropic media have been considered. From the exact solutions obtained, a far-field analysis based on a low-frequency, large-wavelength approximation is given; and numerical results are presented for copper, ice, zinc, beechwood, and several isotropic media for comparison purposes.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 804
Author(s):  
Lin Liu ◽  
Xiumei Zhang ◽  
Xiuming Wang

Natural gas hydrate is a new clean energy source in the 21st century, which has become a research point of the exploration and development technology. Acoustic well logs are one of the most important assets in gas hydrate studies. In this paper, an improved Carcione–Leclaire model is proposed by introducing the expressions of frame bulk modulus, shear modulus and friction coefficient between solid phases. On this basis, the sensitivities of the velocities and attenuations of the first kind of compressional (P1) and shear (S1) waves to relevant physical parameters are explored. In particular, we perform numerical modeling to investigate the effects of frequency, gas hydrate saturation and clay on the phase velocities and attenuations of the above five waves. The analyses demonstrate that, the velocities and attenuations of P1 and S1 are more sensitive to gas hydrate saturation than other parameters. The larger the gas hydrate saturation, the more reliable P1 velocity. Besides, the attenuations of P1 and S1 are more sensitive than velocity to gas hydrate saturation. Further, P1 and S1 are almost nondispersive while their phase velocities increase with the increase of gas hydrate saturation. The second compressional (P2) and shear (S2) waves and the third kind of compressional wave (P3) are dispersive in the seismic band, and the attenuations of them are significant. Moreover, in the case of clay in the solid grain frame, gas hydrate-bearing sediments exhibit lower P1 and S1 velocities. Clay decreases the attenuation of P1, and the attenuations of S1, P2, S2 and P3 exhibit little effect on clay content. We compared the velocity of P1 predicted by the model with the well log data from the Ocean Drilling Program (ODP) Leg 164 Site 995B to verify the applicability of the model. The results of the model agree well with the well log data. Finally, we estimate the hydrate layer at ODP Leg 204 Site 1247B is about 100–130 m below the seafloor, the saturation is between 0–27%, and the average saturation is 7.2%.


2017 ◽  
Vol 284 (1864) ◽  
pp. 20171670 ◽  
Author(s):  
Molly C. Womack ◽  
Jakob Christensen-Dalsgaard ◽  
Luis A. Coloma ◽  
Juan C. Chaparro ◽  
Kim L. Hoke

Sensory losses or reductions are frequently attributed to relaxed selection. However, anuran species have lost tympanic middle ears many times, despite anurans' use of acoustic communication and the benefit of middle ears for hearing airborne sound. Here we determine whether pre-existing alternative sensory pathways enable anurans lacking tympanic middle ears (termed earless anurans) to hear airborne sound as well as eared species or to better sense vibrations in the environment. We used auditory brainstem recordings to compare hearing and vibrational sensitivity among 10 species (six eared, four earless) within the Neotropical true toad family (Bufonidae). We found that species lacking middle ears are less sensitive to high-frequency sounds, however, low-frequency hearing and vibrational sensitivity are equivalent between eared and earless species. Furthermore, extratympanic hearing sensitivity varies among earless species, highlighting potential species differences in extratympanic hearing mechanisms. We argue that ancestral bufonids may have sufficient extratympanic hearing and vibrational sensitivity such that earless lineages tolerated the loss of high frequency hearing sensitivity by adopting species-specific behavioural strategies to detect conspecifics, predators and prey.


2021 ◽  
Vol 11 (7) ◽  
pp. 3124
Author(s):  
Alya Alhammadi ◽  
Jin-You Lu ◽  
Mahra Almheiri ◽  
Fatima Alzaabi ◽  
Zineb Matouk ◽  
...  

A numerical simulation study on elastic wave propagation of a phononic composite structure consisting of epoxy and tungsten carbide is presented for low-frequency elastic wave attenuation applications. The calculated dispersion curves of the epoxy/tungsten carbide composite show that the propagation of elastic waves is prohibited inside the periodic structure over a frequency range. To achieve a wide bandgap, the elastic composite structure can be optimized by changing its dimensions and arrangement, including size, number, and rotation angle of square inclusions. The simulation results show that increasing the number of inclusions and the filling fraction of the unit cell significantly broaden the phononic bandgap compared to other geometric tunings. Additionally, a nonmonotonic relationship between the bandwidth and filling fraction of the composite was found, and this relationship results from spacing among inclusions and inclusion sizes causing different effects on Bragg scatterings and localized resonances of elastic waves. Moreover, the calculated transmission spectra of the epoxy/tungsten carbide composite structure verify its low-frequency bandgap behavior.


Geophysics ◽  
1992 ◽  
Vol 57 (6) ◽  
pp. 854-859 ◽  
Author(s):  
Xiao Ming Tang

A new technique for measuring elastic wave attenuation in the frequency range of 10–150 kHz consists of measuring low‐frequency waveforms using two cylindrical bars of the same material but of different lengths. The attenuation is obtained through two steps. In the first, the waveform measured within the shorter bar is propagated to the length of the longer bar, and the distortion of the waveform due to the dispersion effect of the cylindrical waveguide is compensated. The second step is the inversion for the attenuation or Q of the bar material by minimizing the difference between the waveform propagated from the shorter bar and the waveform measured within the longer bar. The waveform inversion is performed in the time domain, and the waveforms can be appropriately truncated to avoid multiple reflections due to the finite size of the (shorter) sample, allowing attenuation to be measured at long wavelengths or low frequencies. The frequency range in which this technique operates fills the gap between the resonant bar measurement (∼10 kHz) and ultrasonic measurement (∼100–1000 kHz). By using the technique, attenuation values in a PVC (a highly attenuative) material and in Sierra White granite were measured in the frequency range of 40–140 kHz. The obtained attenuation values for the two materials are found to be reliable and consistent.


2019 ◽  
Vol 219 (2) ◽  
pp. 975-994 ◽  
Author(s):  
Gabriel Gribler ◽  
T Dylan Mikesell

SUMMARY Estimating shear wave velocity with depth from Rayleigh-wave dispersion data is limited by the accuracy of fundamental and higher mode identification and characterization. In many cases, the fundamental mode signal propagates exclusively in retrograde motion, while higher modes propagate in prograde motion. It has previously been shown that differences in particle motion can be identified with multicomponent recordings and used to separate prograde from retrograde signals. Here we explore the domain of existence of prograde motion of the fundamental mode, arising from a combination of two conditions: (1) a shallow, high-impedance contrast and (2) a high Poisson ratio material. We present solutions to isolate fundamental and higher mode signals using multicomponent recordings. Previously, a time-domain polarity mute was used with limited success due to the overlap in the time domain of fundamental and higher mode signals at low frequencies. We present several new approaches to overcome this low-frequency obstacle, all of which utilize the different particle motions of retrograde and prograde signals. First, the Hilbert transform is used to phase shift one component by 90° prior to summation or subtraction of the other component. This enhances either retrograde or prograde motion and can increase the mode amplitude. Secondly, we present a new time–frequency domain polarity mute to separate retrograde and prograde signals. We demonstrate these methods with synthetic and field data to highlight the improvements to dispersion images and the resulting dispersion curve extraction.


Sign in / Sign up

Export Citation Format

Share Document