Some recent developments concerning asymptotic distributions of pontograms

1990 ◽  
Vol 108 (3) ◽  
pp. 559-567 ◽  
Author(s):  
Vera R. Eastwood

The data analytical problem of testing whether an empirical set of n given points in the plane could be considered to contain too many straight line configurations in a situation where the generating mechanism of the n points is unknown, was recently reintroduced to the literature by D. G. Kendall and W. S. Kendall[7]. Taking the Land's end data problem (cf. also Broadbent [1] and further references given there) as the anchor point and motivation for their discussion, D. G. and W. S. Kendall developed a new testing device, called the pontogram. The pontogram is a one- parameter stochastic process defined pointwise bywhere N denotes a Poisson process in [0, 1] with N(0) = 0 and unknown intensity parameter μ > 0 and where R = N(1) gives the number of Poisson events in the entire [0, 1] section.

1992 ◽  
Vol 112 (3) ◽  
pp. 613-629 ◽  
Author(s):  
Barbara Szyszkowicz

Let S(N(t)) be defined bywhere {N(t), t ≥ 0} is a Poisson process with intensity parameter 1/μ > 0 and {Xi i ≥ 1} is a family of independent random variables which are also independent of {N(t), t ≥ 0}.


1987 ◽  
Vol 101 (1) ◽  
pp. 131-139 ◽  
Author(s):  
Miklós Csörgő ◽  
Lajos Horváth

Let{N(x), x ≥ 0} be a Poisson process with intensity parameter λ > 0, and introduceWhen looking for the changepoint in the Land's End data, Kendall and Kendall [7] proved for all 0 < ε1 < 1 − ε2 < 1 thatwhere {V(s), − ∞ < s < ∞} is an Ornstein–Uhlenbeck process with covariance function exp (−|t − s|). D. G. Kendall has posed the problem of replacing ε1 and ε2 by zero or by sequences εi(n) → 0 (n → ∞) (i = 1, 2), in (1·1). In this paper we study the latter problem and also its L2 version. The proofs will be based on the following weighted approximation of Zn.


1975 ◽  
Vol 12 (S1) ◽  
pp. 303-309
Author(s):  
Herbert Solomon

The trajectory of a car traveling at a constant speed on an idealized infinite highway can be viewed as a straight line in the time-space plane. Entry times are governed by a Poisson process with intensity parameter A leading to all trajectories as random lines in a plane. The Poisson distribution of number of encounters of cars on the highway is developed through random line models and non-homogeneous Poisson fields, and its parameter, which depends on the specific random measure employed, is obtained explicitly.


1977 ◽  
Vol 9 (1-2) ◽  
pp. 1-9 ◽  
Author(s):  
J. Tiago de Oliveira

The question of large claims in insurance is, evidently, a very important one, chiefly if we consider it in relation with reinsurance. To a statistician it seems that it can be approached, essentially, in two different ways.The first one can be the study of overpassing of a large bound, considered to be a critical one. If N(t) is the Poisson process of events (claims) of intensity v, each claim having amounts Yi, independent and identically distributed with distribution function F(x), the compound Poisson processwhere a denotes the critical level, can describe the behaviour of some problems connected with the overpassing of the critical level. For instance, if h(Y, a) = H(Y − a), where H(x) denotes the Heavside jump function (H(x) = o if x < o, H(x) = 1 if x ≥ o), M(t) is then the number of claims overpassing a; if h(Y, a) = Y H(Y − a), M(t) denotes the total amount of claims exceeding the critical level; if h(Y, a) = (Y − a) H(Y − a), M(t) denotes the total claims reinsured for some reinsurance policy, etc.Taking the year as unit of time, the random variables M(1), M(2) − M(1), … are evidently independent and identically distributed; its distribution function is easy to obtain through the computation of the characteristic function of M(1). For details see Parzen (1964) and the papers on The ASTIN Bulletin on compound processes; for the use of distribution functions F(x), it seems that the ones developed recently by Pickands III (1975) can be useful, as they are, in some way, pre-asymptotic forms associated with tails, leading easily to the asymptotic distributions of extremes.


1958 ◽  
Vol 10 ◽  
pp. 222-229 ◽  
Author(s):  
J. R. Blum ◽  
H. Chernoff ◽  
M. Rosenblatt ◽  
H. Teicher

Let {Xn} (n = 1, 2 , …) be a stochastic process. The random variables comprising it or the process itself will be said to be interchangeable if, for any choice of distinct positive integers i 1, i 2, H 3 … , ik, the joint distribution of depends merely on k and is independent of the integers i 1, i 2, … , i k. It was shown by De Finetti (3) that the probability measure for any interchangeable process is a mixture of probability measures of processes each consisting of independent and identically distributed random variables.


1973 ◽  
Vol 5 (02) ◽  
pp. 217-241 ◽  
Author(s):  
A. M. Walker

Let observations (X 1, X 2, …, Xn ) be obtained from a time series {Xt } such that where the ɛt are independently and identically distributed random variables each having mean zero and finite variance, and the gu (θ) are specified functions of a vector-valued parameter θ. This paper presents a rigorous derivation of the asymptotic distributions of the estimators of A, B, ω and θ obtained by an approximate least-squares method due to Whittle (1952). It is a sequel to a previous paper (Walker (1971)) in which a similar derivation was given for the special case of independent residuals where gu (θ) = 0 for u &gt; 0, the parameter θ thus being absent.


1927 ◽  
Vol 46 ◽  
pp. 210-222 ◽  
Author(s):  
H. W. Turnbull

It is well known that the Plücker coordinates of a straight line in ordinary space satisfy a quadratic identitywhich may also be considered as the equation of a point-quadric in five dimensions, if the six coordinates Pij are treated as six homogeneous coordinates of a point. Projective properties of line geometry may therefore be treated as projective properties of point geometry in five dimensions. This suggests that certain algebraic theories of quaternary forms (corresponding to the geometry of ordinary space) can best be treated as algebraic theories of senary forms: that is, forms in six homogeneous variables.


1967 ◽  
Vol 4 (2) ◽  
pp. 343-355 ◽  
Author(s):  
J. W. Cohen

In the present paper the solutions of two integral equations are derived. One of the integral equations dominates the mathematical description of the stochastic process {vn, n = 1,2, …}, recursively defined by K is a positive constant, τ1, τ2, …; Σ1, Σ2, …; are independent, non-negative variables, with τ1, τ2,…, identically distributed, similarly, the variables Σ1, Σ2, …, are identically distributed.


1976 ◽  
Vol 19 (4) ◽  
pp. 455-460
Author(s):  
G. T. Klincsek

AbstractThe use of decreasing rearrangement formulas, and particularly that of the weak N inequality, is illustrated by deriving from Eτ |f-f(τ -)|≤Eτu (where ft is some stochastic process and τ arbitrary stopping time) the estimate ||f||≤Const||u|| in the class of structureless norms with finite dual Hardy bound.The basic estimate is


Sign in / Sign up

Export Citation Format

Share Document