Period-multiplying cascades for diffeomorphisms of the disc

1994 ◽  
Vol 116 (2) ◽  
pp. 359-374 ◽  
Author(s):  
Jean-Marc Gambaudo ◽  
John Guaschi ◽  
Toby Hall

It is a well-known result in one-dimensional dynamics that if a continuous map of the interval has positive topological entropy, then it has a periodic orbit of period 2i for each integer i ≥ 0 [15] (see also [12]). In fact, one can say rather more: such a map has a sequence of periodic orbits (P)i ≥ 0 with per (Pi) = 2i which form a period-doubling cascade (that is, whose points are ordered and permuted in the way which would occur had the orbits been created in a sequence of period-doubling bifurcations starting from a single fixed point). This result reflects the central role played by period-doubling in transitions to positive entropy in a one-dimensional setting. In this paper we prove an analogous result for positive-entropy orientation-preserving diffeomorphisms of the disc. Using the notion [9] of a two-dimensional cascade, we shall show that such diffeomorphisms always have infinitely many ‘zero-entropy’ cascades of periodic orbits (including a period-doubling cascade, though this need not begin from a fixed point).

2017 ◽  
Vol 27 (04) ◽  
pp. 1750051 ◽  
Author(s):  
Xiujing Han ◽  
Chun Zhang ◽  
Yue Yu ◽  
Qinsheng Bi

This paper reports novel routes to complex bursting patterns based on a forced cubic map, in which boundary-crisis-induced novel bursting patterns are investigated. Typically, the cubic map exhibits stable upper and lower branches of fixed points, which may evolve into chaos in opposite parameter directions by a cascade of period-doubling bifurcations. We show that the chaotic attractors on the stable branches may suddenly disappear by boundary crisis, thus leading to fast transitions from chaos to other attractors and giving rise to switchings between the stable branches of solutions of the cubic map. In particular, the attractors that the trajectory switches to by boundary crisis can be fixed points, periodic orbits and chaos, dependent on parameter values of the cubic map, and this helps us to reveal three general types of boundary-crisis-induced bursting, i.e. bursting of chaos-point type, bursting of chaos-cycle type and bursting of chaos-chaos type. Moreover, each bursting type may contain various bursting patterns. For bursting of chaos-cycle type, we see rich bursting patterns, e.g. chaos-period-2 bursting, chaos-period-4 bursting, chaos-period-8 bursting, etc. Our results enrich the possible routes to complex bursting patterns as well as the underlying mechanisms of complex bursting patterns.


2009 ◽  
Vol 29 (2) ◽  
pp. 381-418 ◽  
Author(s):  
V. V. M. S. CHANDRAMOULI ◽  
M. MARTENS ◽  
W. DE MELO ◽  
C. P. TRESSER

AbstractThe period doubling renormalization operator was introduced by Feigenbaum and by Coullet and Tresser in the 1970s to study the asymptotic small-scale geometry of the attractor of one-dimensional systems that are at the transition from simple to chaotic dynamics. This geometry turns out not to depend on the choice of the map under rather mild smoothness conditions. The existence of a unique renormalization fixed point that is also hyperbolic among generic smooth-enough maps plays a crucial role in the corresponding renormalization theory. The uniqueness and hyperbolicity of the renormalization fixed point were first shown in the holomorphic context, by means that generalize to other renormalization operators. It was then proved that, in the space ofC2+αunimodal maps, forα>0, the period doubling renormalization fixed point is hyperbolic as well. In this paper we study what happens when one approaches from below the minimal smoothness thresholds for the uniqueness and for the hyperbolicity of the period doubling renormalization generic fixed point. Indeed, our main result states that in the space ofC2unimodal maps the analytic fixed point is not hyperbolic and that the same remains true when adding enough smoothness to geta prioribounds. In this smoother class, calledC2+∣⋅∣, the failure of hyperbolicity is tamer than inC2. Things get much worse with just a bit less smoothness thanC2, as then even the uniqueness is lost and other asymptotic behavior becomes possible. We show that the period doubling renormalization operator acting on the space ofC1+Lipunimodal maps has infinite topological entropy.


Author(s):  
Iftichar Mudhar Talb Al-Shraa

Let g be a continuous map from 8 to itself has a fixed point at (0,0), we prove that g has a twist periodic orbit if there is a rational rotation number.


We study the qualitative dynamics of two-parameter families of planar maps of the form F^e(x, y) = (y, -ex+f(y)), where f :R -> R is a C 3 map with a single critical point and negative Schwarzian derivative. The prototype of such maps is the family f(y) = u —y 2 or (in different coordinates) f(y) = Ay(1 —y), in which case F^ e is the Henon map. The maps F e have constant Jacobian determinant e and, as e -> 0, collapse to the family f^. The behaviour of such one-dimensional families is quite well understood, and we are able to use their bifurcation structures and information on their non-wandering sets to obtain results on both local and global bifurcations of F/ ue , for small e . Moreover, we are able to extend these results to the area preserving family F/u. 1 , thereby obtaining (partial) bifurcation sets in the (/u, e)-plane. Among our conclusions we find that the bifurcation sequence for periodic orbits, which is restricted by Sarkovskii’s theorem and the kneading theory for one-dimensional maps, is quite different for two-dimensional families. In particular, certain periodic orbits that appear at the end of the one-dimensional sequence appear at the beginning of the area preserving sequence, and infinitely many families of saddle node and period doubling bifurcation curves cross each other in the ( /u, e ) -parameter plane between e = 0 and e = 1. We obtain these results from a study of the homoclinic bifurcations (tangencies of stable and unstable manifolds) of F /u.e and of the associated sequences of periodic bifurcations that accumulate on them. We illustrate our results with some numerical computations for the orientation-preserving Henon map.


1985 ◽  
Vol 5 (4) ◽  
pp. 501-517 ◽  
Author(s):  
Lluís Alsedà ◽  
Jaume Llibre ◽  
Michał Misiurewicz ◽  
Carles Simó

AbstractLet f be a continuous map from the circle into itself of degree one, having a periodic orbit of rotation number p/q ≠ 0. If (p, q) = 1 then we prove that f has a twist periodic orbit of period q and rotation number p/q (i.e. a periodic orbit which behaves as a rotation of the circle with angle 2πp/q). Also, for this map we give the best lower bound of the topological entropy as a function of the rotation interval if one of the endpoints of the interval is an integer.


2021 ◽  
Vol 31 (16) ◽  
Author(s):  
Shaun Smith ◽  
James Knowles ◽  
Byron Mason ◽  
Sean Biggs

Creep groan is the undesirable vibration observed in the brake pad and disc as brakes are applied during low-speed driving. The presence of friction leads to nonlinear behavior even in simple models of this phenomenon. This paper uses tools from bifurcation theory to investigate creep groan behavior in a nonlinear 3-degrees-of-freedom mathematical model. Three areas of operational interest are identified, replicating results from previous studies: region 1 contains repelling equilibria and attracting periodic orbits (creep groan); region 2 contains both attracting equilibria and periodic orbits (creep groan and no creep groan, depending on initial conditions); region 3 contains attracting equilibria (no creep groan). The influence of several friction model parameters on these regions is presented, which identify that the transition between static and dynamic friction regimes has a large influence on the existence of creep groan. Additional investigations discover the presence of several bifurcations previously unknown to exist in this model, including Hopf, torus and period-doubling bifurcations. This insight provides valuable novel information about the nature of creep groan and indicates that complex behavior can be discovered and explored in relatively simple models.


2009 ◽  
Vol 19 (04) ◽  
pp. 1157-1167
Author(s):  
ADELA COMANICI

Network architecture can lead to robust synchrony in coupled maps and to codimension one bifurcations from synchronous fixed-points at which the associated Jacobian is nilpotent. We discuss the codimension one synchrony-breaking period-doubling bifurcations for three-cell coupled maps. Interesting phenomena occur for all these coupled maps — a branch of period-2 points with amplitude growing as |λ|⅙ for coupled networks of feed-forward type, as well as multiple (two) branches of period-2 points with amplitude growing as |λ|½ for coupled networks of feed-forward type. We also discuss how some results related to patterns of synchrony that are valid for coupled vector fields are also valid for coupled maps.


2010 ◽  
Vol 31 (4) ◽  
pp. 1193-1228 ◽  
Author(s):  
DENIS GAIDASHEV ◽  
HANS KOCH

AbstractIt has been observed that the famous Feigenbaum–Coullet–Tresser period-doubling universality has a counterpart for area-preserving maps of ℝ2. A renormalization approach has been used in a computer-assisted proof of existence of an area-preserving map with orbits of all binary periods in Eckmannet al[Existence of a fixed point of the doubling transformation for area-preserving maps of the plane.Phys. Rev. A 26(1) (1982), 720–722; A computer-assisted proof of universality for area-preserving maps.Mem. Amer. Math. Soc. 47(1984), 1–121]. As is the case with all non-trivial universality problems in non-dissipative systems in dimensions more than one, no analytic proof of this period-doubling universality exists to date. We argue that the period-doubling renormalization fixed point for area-preserving maps is almost one dimensional, in the sense that it is close to the following Hénon-like (after a coordinate change) map:where ϕ solvesWe then give a ‘proof’ of existence of solutions of small analytic perturbations of this one-dimensional problem, and describe some of the properties of this solution. The ‘proof’ consists of an analytic argument for factorized inverse branches of ϕ together with verification of several inequalities and inclusions of subsets of ℂ numerically. Finally, we suggest an analytic approach to the full period-doubling problem for area-preserving maps based on its proximity to the one-dimensional case. In this respect, the paper is an exploration of possible analytic machinery for a non-trivial renormalization problem in a conservative two-dimensional system.


2014 ◽  
Vol 24 (03) ◽  
pp. 1430011 ◽  
Author(s):  
Zhiyan Yang ◽  
Tao Jiang ◽  
Zhujun Jing

Bifurcations and chaos of Duffing–van der Pol equation with nonsymmetric nonlinear restoring and two external forcing terms are investigated. The threshold values of the existence of chaotic motion are obtained under periodic perturbation. By the second-order averaging method, we prove the criteria of the existence of chaos in an averaged system under quasi-periodic perturbation for ω2 = nω1 + εσ, n = 1, 2, 3, 5, and cannot prove the criterion of existence of chaos in an averaged system under quasi-periodic perturbation for ω2 = nω1 + εσ, n = 4, 6, 7, …, where σ is not rational to ω1, but can show the occurrence of chaos in the original system by numerical simulation. Numerical simulation including homoclinic or heteroclinic bifurcation surfaces, bifurcation diagrams, maximal Lyapunov exponents, phase portraits and Poincaré maps, not only show the consistence with the theoretical analysis but also exhibit more new complex dynamical behaviors. We show that cascades of interlocking period-doubling and reverse period-doubling bifurcations lead to interleaving occurrence of chaotic behaviors and quasi-periodic orbits, symmetry-breaking of periodic orbits in chaotic regions, onset of chaos occurring more than once, chaos suddenly disappearing to periodic orbits, strange nonchaotic attractor, nonattracting chaotic set and nice chaotic attractors.


Sign in / Sign up

Export Citation Format

Share Document