Exceptional sets for self-affine fractals

2008 ◽  
Vol 145 (3) ◽  
pp. 669-684 ◽  
Author(s):  
KENNETH FALCONER ◽  
JUN MIAO

AbstractUnder certain conditions the ‘singular value function’ formula gives the Hausdorff dimension of self-affine fractals for almost all parameters in a family. We show that the size of the set of exceptional parameters is small both in the sense of Hausdorff dimension and Fourier dimension.

1988 ◽  
Vol 103 (2) ◽  
pp. 339-350 ◽  
Author(s):  
K. J. Falconer

AbstractIf T is a linear transformation on ℝn with singular values α1 ≥ α2 ≥ … ≥ αn, the singular value function øs is defined by where m is the smallest integer greater than or equal to s. Let T1, …, Tk be contractive linear transformations on ℝn. Let where the sum is over all finite sequences (i1, …, ir) with 1 ≤ ij ≤ k. Then for almost all (a1, …, ak) ∈ ℝnk, the unique non-empty compact set F satisfying has Hausdorff dimension min{d, n}. Moreover the ‘box counting’ dimension of F is almost surely equal to this number.


Fractals ◽  
2018 ◽  
Vol 26 (04) ◽  
pp. 1850049 ◽  
Author(s):  
LULU FANG ◽  
KUNKUN SONG ◽  
MIN WU

Let [Formula: see text] and [Formula: see text] be real numbers. The run-length function of [Formula: see text]-expansions denoted by [Formula: see text] is defined as the maximal length of consecutive zeros in the first [Formula: see text] digits of the [Formula: see text]-expansion of [Formula: see text]. It is known that for Lebesgue almost all [Formula: see text], [Formula: see text] increases to infinity with the logarithmic speed [Formula: see text] as [Formula: see text] goes to infinity. In this paper, we calculate the Hausdorff dimension of the subtle set for which [Formula: see text] grows to infinity with other speeds. More precisely, we prove that for any [Formula: see text], the set [Formula: see text] has full Hausdorff dimension, where [Formula: see text] is a strictly increasing function satisfying that [Formula: see text] is non-increasing, [Formula: see text] and [Formula: see text] as [Formula: see text]. This result significantly extends the existing results in this topic, such as the results in [J.-H. Ma, S.-Y. Wen and Z.-Y. Wen, Egoroff’s theorem and maximal run length, Monatsh. Math. 151(4) (2007) 287–292; R.-B. Zou, Hausdorff dimension of the maximal run-length in dyadic expansion, Czechoslovak Math. J. 61(4) (2011) 881–888; J.-J. Li and M. Wu, On exceptional sets in Erdős–Rényi limit theorem, J. Math. Anal. Appl. 436(1) (2016) 355–365; J.-J. Li and M. Wu, On exceptional sets in Erdős–Rényi limit theorem revisited, Monatsh. Math. 182(4) (2017) 865–875; Y. Sun and J. Xu, A remark on exceptional sets in Erdős–Rényi limit theorem, Monatsh. Math. 184(2) (2017) 291–296; X. Tong, Y.-L. Yu and Y.-F. Zhao, On the maximal length of consecutive zero digits of [Formula: see text]-expansions, Int. J. Number Theory 12(3) (2016) 625–633; J. Liu, and M.-Y. Lü, Hausdorff dimension of some sets arising by the run-length function of [Formula: see text]-expansions, J. Math. Anal. Appl. 455(1) (2017) 832–841; L.-X. Zheng, M. Wu and B. Li, The exceptional sets on the run-length function of [Formula: see text]-expansions, Fractals 25(6) (2017) 1750060; X. Gao, H. Hu and Z.-H. Li, A result on the maximal length of consecutive 0 digits in [Formula: see text]-expansions, Turkish J. Math. 42(2) (2018) 656–665, doi: 10.3906/mat-1704-119].


Fractals ◽  
2018 ◽  
Vol 26 (05) ◽  
pp. 1850074 ◽  
Author(s):  
MENGJIE ZHANG

For any real number [Formula: see text], and any [Formula: see text], let [Formula: see text] be the maximal length of consecutive zeros in the first [Formula: see text] digits of the [Formula: see text]-expansion of [Formula: see text]. Recently, Tong, Yu and Zhao [On the length of consecutive zero digits of [Formula: see text]-expansions, Int. J. Number Theory 12 (2016) 625–633] proved that for any [Formula: see text], for Lebesgue almost all [Formula: see text], [Formula: see text] In this paper, we quantify the size of the set of [Formula: see text] for which [Formula: see text] grows to infinity in a general speed. More precisely, for any increasing function [Formula: see text] with [Formula: see text] tending to [Formula: see text] and [Formula: see text], we show that for any [Formula: see text], the set [Formula: see text] has full Hausdorff dimension.


2019 ◽  
Vol 39 (2) ◽  
pp. 459-479
Author(s):  
Peter Kern ◽  
Ercan Sönmez

Hausdorff dimension results are a classical topic in the study of path properties of random fields. This article presents an alternative approach to Hausdorff dimension results for the sample functions of a large class of self-affine random fields. The aim is to demonstrate the following interesting relation to a series of articles by U. Zähle 1984, 1988, 1990, 1991. Under natural regularity assumptions, we prove that the Hausdorff dimension of the graph of self-affine fields coincides with the carrying dimension of the corresponding self-affine random occupation measure introduced by U. Zähle. As a remarkable consequence we obtain a general formula for the Hausdorff dimension given by means of the singular value function.


Author(s):  
Mengjie Zhang

For any [Formula: see text], let [Formula: see text] be the partial summation of the first [Formula: see text] digits in the binary expansion of [Formula: see text] and [Formula: see text] be its run-length function. The classical Borel’s normal number theorem tells us that for almost all [Formula: see text], the limit of [Formula: see text] as [Formula: see text] goes to infinity is one half. On the other hand, the Erdös–Rényi limit theorem shows that [Formula: see text] increases to infinity with the logarithmic speed [Formula: see text] as [Formula: see text] for almost every [Formula: see text] in [Formula: see text]. In this paper, we are interested in the intersections of exceptional sets arising in the above two famous theorems. More precisely, for any [Formula: see text] and [Formula: see text], we completely determine the Hausdorff dimension of the following set: [Formula: see text] where [Formula: see text] and [Formula: see text] After some minor modifications, our result still holds if we replace the denominator [Formula: see text] in [Formula: see text] with any increasing function [Formula: see text] satisfying [Formula: see text] tending to [Formula: see text] and [Formula: see text]. As a result, we also obtain that the set of points for which neither the sequence [Formula: see text] nor [Formula: see text] converges has full Hausdorff dimension.


1992 ◽  
Vol 111 (1) ◽  
pp. 169-179 ◽  
Author(s):  
K. J. Falconer

AbstractA family {S1, ,Sk} of contracting affine transformations on Rn defines a unique non-empty compact set F satisfying . We obtain estimates for the Hausdorff and box-counting dimensions of such sets, and in particular derive an exact expression for the box-counting dimension in certain cases. These estimates are given in terms of the singular value functions of affine transformations associated with the Si. This paper is a sequel to 4, which presented a formula for the dimensions that was valid in almost all cases.


2017 ◽  
Vol 15 (1) ◽  
pp. 1517-1529
Author(s):  
Zhao Feng

Abstract In this paper, we are able to prove that almost all integers n satisfying some necessary congruence conditions are the sum of j almost equal prime cubes with j = 7, 8, i.e., $\begin{array}{} N=p_1^3+ \ldots +p_j^3 \end{array} $ with $\begin{array}{} |p_i-(N/j)^{1/3}|\leq N^{1/3- \delta +\varepsilon} (1\leq i\leq j), \end{array} $ for some $\begin{array}{} 0 \lt \delta\leq\frac{1}{90}. \end{array} $ Furthermore, we give the quantitative relations between the length of short intervals and the size of exceptional sets.


Author(s):  
Shuyi Lin ◽  
Jinjun Li ◽  
Manli Lou

Let [Formula: see text] denote the largest digit of the first [Formula: see text] terms in the Lüroth expansion of [Formula: see text]. Shen, Yu and Zhou, A note on the largest digits in Luroth expansion, Int. J. Number Theory 10 (2014) 1015–1023 considered the level sets [Formula: see text] and proved that each [Formula: see text] has full Hausdorff dimension. In this paper, we investigate the Hausdorff dimension of the following refined exceptional set: [Formula: see text] and show that [Formula: see text] has full Hausdorff dimension for each pair [Formula: see text] with [Formula: see text]. Combining the two results, [Formula: see text] can be decomposed into the disjoint union of uncountably many sets with full Hausdorff dimension.


Author(s):  
Stuart A. Burrell

AbstractThis paper concerns the intermediate dimensions, a spectrum of dimensions that interpolate between the Hausdorff and box dimensions. Potential-theoretic methods are used to produce dimension bounds for images of sets under Hölder maps and certain stochastic processes. We apply this to compute the almost-sure value of the dimension of Borel sets under index-$$\alpha $$ α fractional Brownian motion in terms of dimension profiles defined using capacities. As a corollary, this establishes continuity of the profiles for Borel sets and allows us to obtain an explicit condition showing how the Hausdorff dimension of a set may influence the typical box dimension of Hölder images such as projections. The methods used propose a general strategy for related problems; dimensional information about a set may be learned from analysing particular fractional Brownian images of that set. To conclude, we obtain bounds on the Hausdorff dimension of exceptional sets, with respect to intermediate dimensions, in the setting of projections.


Sign in / Sign up

Export Citation Format

Share Document