scholarly journals Subexponentially increasing sums of partial quotients in continued fraction expansions

2015 ◽  
Vol 160 (3) ◽  
pp. 401-412 ◽  
Author(s):  
LINGMIN LIAO ◽  
MICHAŁ RAMS

AbstractWe investigate from a multifractal analysis point of view the increasing rate of the sums of partial quotients $S_{n}(x)=\sum_{j=1}^n a_{j}(x)$, where x = [a1(x), a2(x), . . .] is the continued fraction expansion of an irrational x ∈ (0, 1). Precisely, for an increasing function ϕ : $\mathbb{N}$ → $\mathbb{N}$, one is interested in the Hausdorff dimension of the set E_\varphi = \left\{x\in (0,1): \lim_{n\to\infty} \frac {S_n(x)} {\varphi(n)} =1\right\}. Several cases are solved by Iommi and Jordan, Wu and Xu, and Xu. We attack the remaining subexponential case exp(nγ), γ ∈ [1/2, 1). We show that when γ ∈ [1/2, 1), Eϕ has Hausdorff dimension 1/2. Thus, surprisingly, the dimension has a jump from 1 to 1/2 at ϕ(n) = exp(n1/2). In a similar way, the distribution of the largest partial quotient is also studied.

2009 ◽  
Vol 146 (1) ◽  
pp. 207-212 ◽  
Author(s):  
JUN WU ◽  
JIAN XU

AbstractLet [a1(x), a2(x), . . .] be the continued fraction expansion of x ∈ [0,1). Write Tn(x)=max{ak(x):1 ≤ k ≤ n}. Philipp [6] proved that Okano [5] showed that for any k ≥ 2, there exists x ∈ [0, 1) such that T(x)=1/log k. In this paper we show that, for any α ≥ 0, the set is of Hausdorff dimension 1.


2015 ◽  
Vol 11 (08) ◽  
pp. 2369-2380
Author(s):  
Zhen-Liang Zhang

In this paper, we study some exceptional sets of points whose partial quotients in their Sylvester continued fraction expansions obey some restrictions. More precisely, for α ≥ 1 we prove that the Hausdorff dimension of the set [Formula: see text] is one. In addition, we find that the points whose partial quotients in their Sylvester continued fraction expansions obey some property of divisibility have the same Engel continued fraction expansion and Sylvester continued fraction expansion. And we establish that the set of points whose Engel continued fraction expansion and Sylvester continued fraction expansion coincide is uncountable.


2009 ◽  
Vol 29 (5) ◽  
pp. 1451-1478 ◽  
Author(s):  
FRANCESCO CELLAROSI

AbstractWe prove the existence of the limiting distribution for the sequence of denominators generated by continued fraction expansions with even partial quotients, which were introduced by Schweiger [Continued fractions with odd and even partial quotients. Arbeitsberichte Math. Institut Universtät Salzburg4 (1982), 59–70; On the approximation by continues fractions with odd and even partial quotients. Arbeitsberichte Math. Institut Universtät Salzburg1–2 (1984), 105–114] and studied also by Kraaikamp and Lopes [The theta group and the continued fraction expansion with even partial quotients. Geom. Dedicata59(3) (1996), 293–333]. Our main result is proven following the strategy used by Sinai and Ulcigrai [Renewal-type limit theorem for the Gauss map and continued fractions. Ergod. Th. & Dynam. Sys.28 (2008), 643–655] in their proof of a similar renewal-type theorem for Euclidean continued fraction expansions and the Gauss map. The main steps in our proof are the construction of a natural extension of a Gauss-like map and the proof of mixing of a related special flow.


2019 ◽  
Vol 40 (12) ◽  
pp. 3217-3235 ◽  
Author(s):  
AYREENA BAKHTAWAR ◽  
PHILIP BOS ◽  
MUMTAZ HUSSAIN

Let $\unicode[STIX]{x1D6F9}:[1,\infty )\rightarrow \mathbb{R}_{+}$ be a non-decreasing function, $a_{n}(x)$ the $n$th partial quotient of $x$ and $q_{n}(x)$ the denominator of the $n$th convergent. The set of $\unicode[STIX]{x1D6F9}$-Dirichlet non-improvable numbers, $$\begin{eqnarray}G(\unicode[STIX]{x1D6F9}):=\{x\in [0,1):a_{n}(x)a_{n+1}(x)>\unicode[STIX]{x1D6F9}(q_{n}(x))\text{ for infinitely many }n\in \mathbb{N}\},\end{eqnarray}$$ is related with the classical set of $1/q^{2}\unicode[STIX]{x1D6F9}(q)$-approximable numbers ${\mathcal{K}}(\unicode[STIX]{x1D6F9})$ in the sense that ${\mathcal{K}}(3\unicode[STIX]{x1D6F9})\subset G(\unicode[STIX]{x1D6F9})$. Both of these sets enjoy the same $s$-dimensional Hausdorff measure criterion for $s\in (0,1)$. We prove that the set $G(\unicode[STIX]{x1D6F9})\setminus {\mathcal{K}}(3\unicode[STIX]{x1D6F9})$ is uncountable by proving that its Hausdorff dimension is the same as that for the sets ${\mathcal{K}}(\unicode[STIX]{x1D6F9})$ and $G(\unicode[STIX]{x1D6F9})$. This gives an affirmative answer to a question raised by Hussain et al [Hausdorff measure of sets of Dirichlet non-improvable numbers. Mathematika 64(2) (2018), 502–518].


2015 ◽  
Vol 158 (3) ◽  
pp. 419-437 ◽  
Author(s):  
BAO-WEI WANG ◽  
JUN WU ◽  
JIAN XU

AbstractWe generalise the mass transference principle established by Beresnevich and Velani to limsup sets generated by rectangles. More precisely, let {xn}n⩾1 be a sequence of points in the unit cube [0, 1]d with d ⩾ 1 and {rn}n⩾1 a sequence of positive numbers tending to zero. Under the assumption of full Lebesgue measure theoretical statement of the set \begin{equation*}\big\{x\in [0,1]^d: x\in B(x_n,r_n), \ {{\rm for}\, {\rm infinitely}\, {\rm many}}\ n\in \mathbb{N}\big\},\end{equation*} we determine the lower bound of the Hausdorff dimension and Hausdorff measure of the set \begin{equation*}\big\{x\in [0,1]^d: x\in B^{a}(x_n,r_n), \ {{\rm for}\, {\rm infinitely}\, {\rm many}}\ n\in \mathbb{N}\big\},\end{equation*} where a = (a1, . . ., ad) with 1 ⩽ a1 ⩽ a2 ⩽ . . . ⩽ ad and Ba(x, r) denotes a rectangle with center x and side-length (ra1, ra2,. . .,rad). When a1 = a2 = . . . = ad, the result is included in the setting considered by Beresnevich and Velani.


Author(s):  
JINHUA CHANG ◽  
HAIBO CHEN

AbstractLet 0 ⩽ α ⩽ ∞ and ψ be a positive function defined on (0, ∞). In this paper, we will study the level sets L(α, {ψ(n)}), B(α, {ψ(n)}) and T(α, {ψ(n)}) which are related respectively to the sequence of the largest digits among the first n partial quotients {Ln(x)}n≥1, the increasing sequence of the largest partial quotients {Bn(x)}n⩾1 and the sequence of successive occurrences of the largest partial quotients {Tn(x)}n⩾1 in the continued fraction expansion of x ∈ [0,1) ∩ ℚc. Under suitable assumptions of the function ψ, we will prove that the sets L(α, {ψ(n)}), B(α, {ψ(n)}) and T(α, {ψ(n)}) are all of full Hausdorff dimensions for any 0 ⩽ α ⩽ ∞. These results complement some limit theorems given by J. Galambos [4] and D. Barbolosi and C. Faivre [1].


2018 ◽  
Vol 107 (02) ◽  
pp. 272-288
Author(s):  
TOPI TÖRMÄ

We study generalized continued fraction expansions of the form $$\begin{eqnarray}\frac{a_{1}}{N}\frac{}{+}\frac{a_{2}}{N}\frac{}{+}\frac{a_{3}}{N}\frac{}{+}\frac{}{\cdots },\end{eqnarray}$$ where $N$ is a fixed positive integer and the partial numerators $a_{i}$ are positive integers for all $i$ . We call these expansions $\operatorname{dn}_{N}$ expansions and show that every positive real number has infinitely many $\operatorname{dn}_{N}$ expansions for each $N$ . In particular, we study the $\operatorname{dn}_{N}$ expansions of rational numbers and quadratic irrationals. Finally, we show that every positive real number has, for each $N$ , a $\operatorname{dn}_{N}$ expansion with bounded partial numerators.


Sign in / Sign up

Export Citation Format

Share Document