On the exceptional sets in Sylvester continued fraction expansion

2015 ◽  
Vol 11 (08) ◽  
pp. 2369-2380
Author(s):  
Zhen-Liang Zhang

In this paper, we study some exceptional sets of points whose partial quotients in their Sylvester continued fraction expansions obey some restrictions. More precisely, for α ≥ 1 we prove that the Hausdorff dimension of the set [Formula: see text] is one. In addition, we find that the points whose partial quotients in their Sylvester continued fraction expansions obey some property of divisibility have the same Engel continued fraction expansion and Sylvester continued fraction expansion. And we establish that the set of points whose Engel continued fraction expansion and Sylvester continued fraction expansion coincide is uncountable.

2009 ◽  
Vol 29 (5) ◽  
pp. 1451-1478 ◽  
Author(s):  
FRANCESCO CELLAROSI

AbstractWe prove the existence of the limiting distribution for the sequence of denominators generated by continued fraction expansions with even partial quotients, which were introduced by Schweiger [Continued fractions with odd and even partial quotients. Arbeitsberichte Math. Institut Universtät Salzburg4 (1982), 59–70; On the approximation by continues fractions with odd and even partial quotients. Arbeitsberichte Math. Institut Universtät Salzburg1–2 (1984), 105–114] and studied also by Kraaikamp and Lopes [The theta group and the continued fraction expansion with even partial quotients. Geom. Dedicata59(3) (1996), 293–333]. Our main result is proven following the strategy used by Sinai and Ulcigrai [Renewal-type limit theorem for the Gauss map and continued fractions. Ergod. Th. & Dynam. Sys.28 (2008), 643–655] in their proof of a similar renewal-type theorem for Euclidean continued fraction expansions and the Gauss map. The main steps in our proof are the construction of a natural extension of a Gauss-like map and the proof of mixing of a related special flow.


2009 ◽  
Vol 146 (1) ◽  
pp. 207-212 ◽  
Author(s):  
JUN WU ◽  
JIAN XU

AbstractLet [a1(x), a2(x), . . .] be the continued fraction expansion of x ∈ [0,1). Write Tn(x)=max{ak(x):1 ≤ k ≤ n}. Philipp [6] proved that Okano [5] showed that for any k ≥ 2, there exists x ∈ [0, 1) such that T(x)=1/log k. In this paper we show that, for any α ≥ 0, the set is of Hausdorff dimension 1.


Author(s):  
JINHUA CHANG ◽  
HAIBO CHEN

AbstractLet 0 ⩽ α ⩽ ∞ and ψ be a positive function defined on (0, ∞). In this paper, we will study the level sets L(α, {ψ(n)}), B(α, {ψ(n)}) and T(α, {ψ(n)}) which are related respectively to the sequence of the largest digits among the first n partial quotients {Ln(x)}n≥1, the increasing sequence of the largest partial quotients {Bn(x)}n⩾1 and the sequence of successive occurrences of the largest partial quotients {Tn(x)}n⩾1 in the continued fraction expansion of x ∈ [0,1) ∩ ℚc. Under suitable assumptions of the function ψ, we will prove that the sets L(α, {ψ(n)}), B(α, {ψ(n)}) and T(α, {ψ(n)}) are all of full Hausdorff dimensions for any 0 ⩽ α ⩽ ∞. These results complement some limit theorems given by J. Galambos [4] and D. Barbolosi and C. Faivre [1].


Author(s):  
LINGLING HUANG ◽  
CHAO MA

Abstract This paper is concerned with the growth rate of the product of consecutive partial quotients relative to the denominator of the convergent for the continued fraction expansion of an irrational number. More precisely, given a natural number $m,$ we determine the Hausdorff dimension of the following set: $$ \begin{align*} E_m(\tau)=\bigg\{x\in [0,1): \limsup\limits_{n\rightarrow\infty}\frac{\log (a_n(x)a_{n+1}(x)\cdots a_{n+m}(x))}{\log q_n(x)}=\tau\bigg\}, \end{align*} $$ where $\tau $ is a nonnegative number. This extends the dimensional result of Dirichlet nonimprovable sets (when $m=1$ ) shown by Hussain, Kleinbock, Wadleigh and Wang.


Author(s):  
AYREENA BAKHTAWAR

Abstract In this article we aim to investigate the Hausdorff dimension of the set of points $x \in [0,1)$ such that for any $r\in \mathbb {N}$ , $$ \begin{align*} a_{n+1}(x)a_{n+2}(x)\cdots a_{n+r}(x)\geq e^{\tau(x)(h(x)+\cdots+h(T^{n-1}(x)))} \end{align*} $$ holds for infinitely many $n\in \mathbb {N}$ , where h and $\tau $ are positive continuous functions, T is the Gauss map and $a_{n}(x)$ denotes the nth partial quotient of x in its continued fraction expansion. By appropriate choices of $r,\tau (x)$ and $h(x)$ we obtain various classical results including the famous Jarník–Besicovitch theorem.


2013 ◽  
Vol 09 (05) ◽  
pp. 1237-1247 ◽  
Author(s):  
LUMING SHEN ◽  
JIAN XU ◽  
HUIPING JING

For x ∈ I, let [A1(x), A2(x), …] be the continued fraction expansions over the field of Laurent series, write Ln(x) ≔ max { deg A1(x), deg A2(x), …, deg An(x)}, which is called the largest degree of partial quotients. In this paper, we give an iterated logarithm type theorem for Ln(x), and by which, we get that for P-almost all x ∈ I, [Formula: see text]. Also the Hausdorff dimensions of the related exceptional sets are determined.


2015 ◽  
Vol 160 (3) ◽  
pp. 401-412 ◽  
Author(s):  
LINGMIN LIAO ◽  
MICHAŁ RAMS

AbstractWe investigate from a multifractal analysis point of view the increasing rate of the sums of partial quotients $S_{n}(x)=\sum_{j=1}^n a_{j}(x)$, where x = [a1(x), a2(x), . . .] is the continued fraction expansion of an irrational x ∈ (0, 1). Precisely, for an increasing function ϕ : $\mathbb{N}$ → $\mathbb{N}$, one is interested in the Hausdorff dimension of the set E_\varphi = \left\{x\in (0,1): \lim_{n\to\infty} \frac {S_n(x)} {\varphi(n)} =1\right\}. Several cases are solved by Iommi and Jordan, Wu and Xu, and Xu. We attack the remaining subexponential case exp(nγ), γ ∈ [1/2, 1). We show that when γ ∈ [1/2, 1), Eϕ has Hausdorff dimension 1/2. Thus, surprisingly, the dimension has a jump from 1 to 1/2 at ϕ(n) = exp(n1/2). In a similar way, the distribution of the largest partial quotient is also studied.


2020 ◽  
Vol 102 (2) ◽  
pp. 196-206
Author(s):  
TENG SONG ◽  
QINGLONG ZHOU

For an irrational number $x\in [0,1)$, let $x=[a_{1}(x),a_{2}(x),\ldots ]$ be its continued fraction expansion with partial quotients $\{a_{n}(x):n\geq 1\}$. Given $\unicode[STIX]{x1D6E9}\in \mathbb{N}$, for $n\geq 1$, the $n$th longest block function of $x$ with respect to $\unicode[STIX]{x1D6E9}$ is defined by $L_{n}(x,\unicode[STIX]{x1D6E9})=\max \{k\geq 1:a_{j+1}(x)=\cdots =a_{j+k}(x)=\unicode[STIX]{x1D6E9}~\text{for some}~j~\text{with}~0\leq j\leq n-k\}$, which represents the length of the longest consecutive sequence whose elements are all $\unicode[STIX]{x1D6E9}$ from the first $n$ partial quotients of $x$. We consider the growth rate of $L_{n}(x,\unicode[STIX]{x1D6E9})$ as $n\rightarrow \infty$ and calculate the Hausdorff dimensions of the level sets and exceptional sets arising from the longest block function.


Sign in / Sign up

Export Citation Format

Share Document