scholarly journals On the unique predual problem for Lipschitz spaces

2017 ◽  
Vol 165 (3) ◽  
pp. 467-473 ◽  
Author(s):  
NIK WEAVER

AbstractFor any metric space X, the predual of Lip(X) is unique. If X has finite diameter or is complete and convex—in particular, if it is a Banach space—then the predual of Lip0(X) is unique.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Toufik Tiaiba ◽  
Dahmane Achour

Abstract We introduce and investigate the injective hull of the strongly Lipschitz classical p-compact operator ideal defined between a pointed metric space and a Banach space. As an application we extend some characterizations of the injective hull of the strongly Lipschitz classical p-compact from the linear case to the Lipschitz case. Also, we introduce the ideal of Lipschitz unconditionally quasi p-nuclear operators between pointed metric spaces and show that it coincides with the Lipschitz injective hull of the ideal of Lipschitz classical p-compact operators.


1992 ◽  
Vol 34 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Werner J. Ricker

Let Σ be a σ-algebra of subsets of some set Ω and let μ:Σ→[0,∞] be a σ-additive measure. If Σ(μ) denotes the set of all elements of Σ with finite μ-measure (where sets equal μ-a.e. are identified in the usual way), then a metric d can be defined in Σ(μ) by the formulahere E ΔF = (E\F) ∪ (F\E) denotes the symmetric difference of E and F. The measure μ is called separable whenever the metric space (Σ(μ), d) is separable. It is a classical result that μ is separable if and only if the Banach space L1(μ), is separable [8, p.137]. To exhibit non-separable measures is not a problem; see [8, p. 70], for example. If Σ happens to be the σ-algebra of μ-measurable sets constructed (via outer-measure μ*) by extending μ defined originally on merely a semi-ring of sets Γ ⊆ Σ, then it is also classical that the countability of Γ guarantees the separability of μ and hence, also of L1(μ), [8, p. 69].


2015 ◽  
Vol 3 (1) ◽  
Author(s):  
F. Baudier ◽  
G. Lancien

Abstract We introduce the notions of almost Lipschitz embeddability and nearly isometric embeddability. We prove that for p ∈ [1,∞], every proper subset of Lp is almost Lipschitzly embeddable into a Banach space X if and only if X contains uniformly the ℓpn’s. We also sharpen a result of N. Kalton by showing that every stable metric space is nearly isometrically embeddable in the class of reflexive Banach spaces.


2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Ljiljana Gajić ◽  
Mila Stojaković ◽  
Biljana Carić

The purpose of this paper is to prove some fixed point results for mapping without continuity condition on Takahashi convex metric space as an application of synthetic approaches to fixed point problems of Angrisani and Clavelli. Our results are generalizations in Banach space of fixed point results proved by Kirk and Saliga, 2000; Ahmed and Zeyada, 2010.


2010 ◽  
Vol 02 (04) ◽  
pp. 581-597 ◽  
Author(s):  
E. VEOMETT ◽  
K. WILDRICK

Mendel and Naor's definition of metric cotype extends the notion of the Rademacher cotype of a Banach space to all metric spaces. Every Banach space has metric cotype at least 2. We show that any metric space that is bi-Lipschitz is equivalent to an ultrametric space having infimal metric cotype 1. We discuss the invariance of metric cotype inequalities under snowflaking mappings and Gromov–Hausdorff limits, and use these facts to establish a partial converse of the main result.


1976 ◽  
Vol 15 (1) ◽  
pp. 87-96
Author(s):  
John Staples

The notion of asymptotic centre of a bounded sequence of points in a uniformly convex Banach space was introduced by Edelstein in order to prove, in a quasi-constructive way, fixed point theorems for nonexpansive and similar maps.Similar theorems have also been proved by, for example, adding a compactness hypothesis to the restrictions on the domain of the maps. In such proofs, which are generally less constructive, it may be possible to weaken the uniform convexity hypothesis.In this paper Edelstein's technique is extended by defining a notion of asymptotic centre for an arbitrary set of nonempty bounded subsets of a metric space. It is shown that when the metric space is uniformly rotund and complete, and when the set of bounded subsets is a filter base, this filter base has a unique asymptotic centre. This fact is used to derive, in a uniform way, several fixed point theorems for nonexpansive and similar maps, both single-valued and many-valued.Though related to known results, each of the fixed point theorems proved is either stronger than the corresponding known result, or has a compactness hypothesis replaced by the assumption of uniform convexity.


2018 ◽  
Vol 7 (2) ◽  
pp. 197-209
Author(s):  
Pascal Gourdel ◽  
Nadia Mâagli

AbstractIn the spirit of Michael’s selection theorem [6, Theorem 3.1”’], we consider a nonempty convex-valued lower semicontinuous correspondence {\varphi:X\to 2^{Y}}. We prove that if φ has either closed or finite-dimensional images, then there admits a continuous single-valued selection, where X is a metric space and Y is a Banach space. We provide a geometric and constructive proof of our main result based on the concept of peeling introduced in this paper.


2021 ◽  
Vol 151 (6) ◽  
pp. 1683-1699
Author(s):  
Ramón J. Aliaga ◽  
Camille Noûs ◽  
Colin Petitjean ◽  
Antonín Procházka

We prove a general principle satisfied by weakly precompact sets of Lipschitz-free spaces. By this principle, certain infinite dimensional phenomena in Lipschitz-free spaces over general metric spaces may be reduced to the same phenomena in free spaces over their compact subsets. As easy consequences we derive several new and some known results. The main new results are: $\mathcal {F}(X)$ is weakly sequentially complete for every superreflexive Banach space $X$, and $\mathcal {F}(M)$ has the Schur property and the approximation property for every scattered complete metric space $M$.


Author(s):  
Thomas Weighill ◽  
Takamitsu Yamauchi ◽  
Nicolò Zava

AbstractWe consider infinite-dimensional properties in coarse geometry for hyperspaces consisting of finite subsets of metric spaces with the Hausdorff metric. We see that several infinite-dimensional properties are preserved by taking the hyperspace of subsets with at most n points. On the other hand, we prove that, if a metric space contains a sequence of long intervals coarsely, then its hyperspace of finite subsets is not coarsely embeddable into any uniformly convex Banach space. As a corollary, the hyperspace of finite subsets of the real line is not coarsely embeddable into any uniformly convex Banach space. It is also shown that every (not necessarily bounded geometry) metric space with straight finite decomposition complexity has metric sparsification property.


Filomat ◽  
2017 ◽  
Vol 31 (11) ◽  
pp. 3291-3294 ◽  
Author(s):  
Dehaish Bin ◽  
Mohamed Khamsi

In this work, we extend the fixed point result of Kirk and Xu for asymptotic pointwise nonexpansive mappings in a uniformly convex Banach space to monotone mappings defined in a hyperbolic uniformly convex metric space endowed with a partial order.


Sign in / Sign up

Export Citation Format

Share Document