Minimal blow-up asymptotics of quasilinear heat equations

2001 ◽  
Vol 131 (6) ◽  
pp. 1297-1321
Author(s):  
M. Chaves ◽  
Victor A. Galaktionov

We study the asymptotic properties of blow-up solutions u = u(x, t) ≥ 0 of the quasilinear heat equation , where k(u) is a smooth non-negative function, with a given blowing up regime on the boundary u(0, t) = ψ(t) > 0 for t ∈ (0, 1), where ψ(t) → ∞ as t → 1−, and bounded initial data u(x, 0) ≥ 0. We classify the asymptotic properties of the solutions near the blow-up time, t → 1−, in terms of the heat conductivity coefficient k(u) and of boundary data ψ(t); both are assumed to be monotone. We describe a domain, denoted by , of minimal asymptotics corresponding to the data ψ(t) with a slow growth as t → 1− and a class of nonlinear coefficients k(u).We prove that for any problem in S11−, such a blow-up singularity is asymptotically structurally equivalent to a singularity of the heat equation ut = uxx described by its self-similar solution of the form u*(x, t) = −ln(1 − t) + g(ξ), ξ = x/(1 − t)1/2, where g solves a linear ordinary differential equation. This particular self-similar solution is structurally stable upon perturbations of the boundary function and also upon nonlinear perturbations of the heat equation with the basin of attraction .

Author(s):  
Noriko Mizoguchi

We are concerned with a Cauchy problem for the semilinear heat equationthen u is called a backward self-similar solution blowing up at t = T. Let pS and pL be the Sobolev and the Lepin exponents, respectively. It was shown by Mizoguchi (J. Funct. Analysis257 (2009), 2911–2937) that k ≡ (p − 1)−1/(p−1) is a unique regular radial solution of (P) if p > pL. We prove that it remains valid for p = pL. We also show the uniqueness of singular radial solution of (P) for p > pS. These imply that the structure of radial backward self-similar blow-up solutions is quite simple for p ≥ pL.


Author(s):  
Noriko Mizoguchi

We consider a Cauchy problem for a semilinear heat equationwith p > 1. If u(x, t) = (T − t)−1/(p−1)ϕ((T − t)−1/2x) for x ∈ ℝN and t ∈ [0, T),where ϕ ∈ L∞(ℝN) is a solution not identically equal to zero ofthen u is called a backward self-similar solution blowing up at t = T. We show that, for all p > 1, there exists no radial sign-changing solution of (E) which belongs to L∞(ℝN). This implies the non-existence of radial backward self-similar solution with sign change blowing up in finite time.


1999 ◽  
Vol 129 (6) ◽  
pp. 1197-1227 ◽  
Author(s):  
J. Matos

In this paper, we study the blow-up behaviour of the radially symmetric non-negative solutions u of the semilinear heat equation with supercritical power nonlinearity up (that is, (N – 2)p> N + 2). We prove the existence of non-trivial self-similar blow-up patterns of u around the blow-up point x = 0. This result follows from a convergence theorem for a nonlinear parabolic equation associated to the initial one after rescaling by similarity variables.


1992 ◽  
Vol 3 (4) ◽  
pp. 319-341 ◽  
Author(s):  
S. P. Hastings ◽  
L. A. Peletier

We discuss the self-similar solutions of the second kind associated with the propagation of turbulent bursts in a fluid at rest. Such solutions involve an eigenvalue parameter μ, which cannot be determined from dimensional analysis. Existence and uniqueness are established and the dependence of μ on a physical parameter λ in the problem is studied: estimates are obtained and the asymptotic behaviour as λ → ∞ is established.


Sign in / Sign up

Export Citation Format

Share Document