A global invertibility theorem for manifolds with boundary

Author(s):  
Alan Weinstein

SynopsisA local homeomorphism from a compact, connected manifold with boundary to a simply connected manifold without boundary is shown to be one-to-one if it is one-to-one on each component of the boundary.

2015 ◽  
Vol 26 (05) ◽  
pp. 1550029
Author(s):  
Yasha Savelyev

We study a smooth analogue of jumping curves of a holomorphic vector bundle, and use Yang–Mills theory over S2 to show that any non-trivial, smooth Hermitian vector bundle E over a smooth simply connected manifold, must have such curves. This is used to give new examples complex manifolds for which a non-trivial holomorphic vector bundle must have jumping curves in the classical sense (when c1(E) is zero). We also use this to give a new proof of a theorem of Gromov on the norm of curvature of unitary connections, and make the theorem slightly sharper. Lastly we define a sequence of new non-trivial integer invariants of smooth manifolds, connected to this theory of smooth jumping curves, and make some computations of these invariants. Our methods include an application of the recently developed Morse–Bott chain complex for the Yang–Mills functional over S2.


2021 ◽  
Author(s):  
Yu-Lin Chou

We show as a main message that there is a simple dimension-preserving way to openly and densely embed every topological manifold into a compact ``nonstandard'' topological manifold with boundary.This class of ``nonstandard'' topological manifolds with boundary contains the usual topological manifolds with boundary.In particular,the Alexandroff one-point compactification of every given topological $n$-manifold is a ``nonstandard'' topological $n$-manifold with boundary.


2010 ◽  
Vol 53 (4) ◽  
pp. 674-683 ◽  
Author(s):  
Alexandru Kristály ◽  
Nikolaos S. Papageorgiou ◽  
Csaba Varga

AbstractWe study a semilinear elliptic problem on a compact Riemannian manifold with boundary, subject to an inhomogeneous Neumann boundary condition. Under various hypotheses on the nonlinear terms, depending on their behaviour in the origin and infinity, we prove multiplicity of solutions by using variational arguments.


1952 ◽  
Vol 4 ◽  
pp. 329-342 ◽  
Author(s):  
Paul A. White

In R. L. Wilder's book [2] the open and closed generalized manifolds are extensively studied. However, no study is made of the generalized manifold with boundary nor is a definition of such a space given except in the case of the generalized closed n-cell. A definition of a generalized manifold with boundary was given by the author in his paper [1]. Before undertaking the study of further properties of these manifolds it seems appropriate to characterize the manifolds with boundary in terms of the open and closed manifolds of Wilder. It is to that purpose that this paper is directed and in particular the generalized closed n-cell of Wilder is characterized as a special manifold with boundary.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Hiro Lee Tanaka

Abstract Let Q be a simply connected manifold. We show that every exact Lagrangian cobordism between compact, exact Lagrangians in T*Q is an h-cobordism. This is a corollary of the Abouzaid–Kragh Theorem.


1968 ◽  
Vol 20 ◽  
pp. 1522-1530
Author(s):  
John D. Miller

LetMbe a smooth, closed, simply connected manifold of dimension greater than 5. LetTbe an involution onMwith a positive, finite number of fixed points. Our aim in this paper is to prove the following theorem (which is somewhat like that of Wasserman (7)).


2012 ◽  
Vol 10 (6) ◽  
Author(s):  
Grzegorz Graff ◽  
Agnieszka Kaczkowska

AbstractLet f be a smooth self-map of m-dimensional, m ≥ 4, smooth closed connected and simply-connected manifold, r a fixed natural number. For the class of maps with periodic sequence of Lefschetz numbers of iterations the authors introduced in [Graff G., Kaczkowska A., Reducing the number of periodic points in smooth homotopy class of self-maps of simply-connected manifolds with periodic sequence of Lefschetz numbers, Ann. Polon. Math. (in press)] the topological invariant J[f] which is equal to the minimal number of periodic points with the periods less or equal to r in the smooth homotopy class of f.In this paper the invariant J[f] is computed for self-maps of 4-manifold M with dimH 2(M; ℚ) ≤ 4 and estimated for other types of manifolds. We also use J[f] to compare minimization of the number of periodic points in smooth and in continuous categories.


2020 ◽  
Vol 30 (5) ◽  
pp. 1183-1223
Author(s):  
Simone Cecchini

AbstractWe develop index theory on compact Riemannian spin manifolds with boundary in the case when the topological information is encoded by bundles which are supported away from the boundary. As a first application, we establish a “long neck principle” for a compact Riemannian spin n-manifold with boundary X, stating that if $${{\,\mathrm{scal}\,}}(X)\ge n(n-1)$$ scal ( X ) ≥ n ( n - 1 ) and there is a nonzero degree map into the sphere $$f:X\rightarrow S^n$$ f : X → S n which is strictly area decreasing, then the distance between the support of $$\text {d}f$$ d f and the boundary of X is at most $$\pi /n$$ π / n . This answers, in the spin setting and for strictly area decreasing maps, a question recently asked by Gromov. As a second application, we consider a Riemannian manifold X obtained by removing k pairwise disjoint embedded n-balls from a closed spin n-manifold Y. We show that if $${{\,\mathrm{scal}\,}}(X)>\sigma >0$$ scal ( X ) > σ > 0 and Y satisfies a certain condition expressed in terms of higher index theory, then the radius of a geodesic collar neighborhood of $$\partial X$$ ∂ X is at most $$\pi \sqrt{(n-1)/(n\sigma )}$$ π ( n - 1 ) / ( n σ ) . Finally, we consider the case of a Riemannian n-manifold V diffeomorphic to $$N\times [-1,1]$$ N × [ - 1 , 1 ] , with N a closed spin manifold with nonvanishing Rosenebrg index. In this case, we show that if $${{\,\mathrm{scal}\,}}(V)\ge \sigma >0$$ scal ( V ) ≥ σ > 0 , then the distance between the boundary components of V is at most $$2\pi \sqrt{(n-1)/(n\sigma )}$$ 2 π ( n - 1 ) / ( n σ ) . This last constant is sharp by an argument due to Gromov.


Sign in / Sign up

Export Citation Format

Share Document