scholarly journals A non-linear difference equation with two parameters. II

Author(s):  
A. Brown

AbstractThe paper discusses solutions of period 4 for the difference equationwhere k and m are real parameters, with k > 0. For given values of k and m there are at most three solutions with period 4 and equations are set up to determine the elements of these solutions and the stability of each solution. Only real solutions are considered. The procedure that is used to find these solutions allows unstable solutions to be identified as well as stable solutions.In a previous paper, solutions of period 2 and period 3 were examined for this equation and there was evidence of anomalous behaviour in the way the stability intervals occurred. Some preliminary information about solutions of period 4 was mentioned in the discussion. The present paper provides more complete results, which confirm the anomalous behaviour and give a better idea of how the stability criterion changes for different families of solutions. These results are used to indicate the variety of behaviour that can be found for one-parameter systems by imposing suitable conditions on m and k.

Author(s):  
A. Brown

AbstractThe paper is mainly concerned with the difference equationwhere k and m are parameters, with k > 0. This equation arises from a method proposed for solving a cubic equation by iteration and represents a standardised form of the general problem. In using the above equation it is essential to know when the iteration process converges and this is discussed by means of the usual stability criterion. Critical values are obtained for the occurrence of solutions with period two and period three and the stability of these solutions is also examined. This was done by considering the changes as k increases, for a give value of m, which makes it effectively a one-parameter problem, and it turns out that the change with k can differ strongly from the usual behaviour for a one-parameter difference equation. For m = 2, for example it appears that the usual picture of stable 2-cycle solutions giving way to stable 4-cycle solutions is valid for smaller values of k but the situation is recersed for larger values of k where stable 4-cycle solutions precede stable 2-cycle solutions. Similar anomalies arise for the 3-cycle solutions.


Author(s):  
A. Brown

AbstractThe paper extends earlier work by using the factorisation method to discuss solutions of period four for the difference equationThis equation was suggested by R. M. May as a simple mathematical model for the effect of frequency-dependent selection in genetics. It is shown that for a given value of the parameter, a, the identification of solutions of period four can be reduced to finding real roots for a polynomial equation of degree eight. The appropriate values of xn follow from a quartic equation. By splitting up the problem in this way it becomes relatively straightforward to determine the critical values of a at which the various solutions of period four first appear and to discuss the stability of these solutions. Intervals of stability are tabulated in the paper.


1974 ◽  
Vol 17 (1) ◽  
pp. 77-83
Author(s):  
Edward Moore

Vasil’eva, [2], demonstrates a close connection between the explicit formulae for solutions to the linear difference equation with constant coefficients(1.1)where z is an n-vector, A an n×n constant matrix, τ>0, and a corresponding differential equation with constant coefficients(1.2)(1.2) is obtained from (1.1) by replacing the difference z(t—τ) by the first two terms of its Taylor Series expansion, combined with a suitable rearrangement of the terms.


Author(s):  
A. Brown

AbstractThe paper uses the factorisation method to discuss solutions of period three for the difference equationwhich has been proposed as a simple mathematical model for the effect of frequency dependent selection in genetics. Numerical values are obtained for the critical values of a at which solutions of period three first appear. In addition, the interval in which stable solutions are possible has been determined. Exact solutions are given for the case a = 4 and these have been used to check the results.


1937 ◽  
Vol 30 ◽  
pp. vi-x
Author(s):  
C. G. Darwin

1. If the approximate numerical value of e is expressed as a continued fraction the result isand it was in finding the proof that the sequence extends correctly to infinity that the following work was done. First the continued fraction may be simplified by setting down the difference equations for numerator and denominator as usual, and eliminating two out of every successive three equations. A difference equation is thus formed between the first, fourth, seventh, tenth … convergents , and this equation will generate another continued fraction. After a little rearrangement of the first two members it appears that (1) implies2. We therefore consider the continued fractionwhich includes (2), and also certain continued fractions which were discussed by Prof. Turnbull. He evaluated them without solving the difference equations, and it is the purpose here to show how the difference equations may be solved completely both in his cases and in the different problem of (2). It will appear that the work is connected with certain types of hypergeometric function, but I shall not go into this deeply.


1917 ◽  
Vol 36 ◽  
pp. 40-60
Author(s):  
Eleanor Pairman

In 1730 there was published Stirling's Methodus Differentialis, and in it (Prop. VIII., p. 44) he considers the Difference Equationand shows that it is satisfied by an inverse factorial series


Author(s):  
James J. Buckley ◽  
◽  
Thomas Feuring ◽  
Yoichi Hayashi ◽  
◽  
...  

In this paper we study fuzzy solutions to the second order, linear, difference equation with constant coefficients but having fuzzy initial conditions. We look at two methods of solution: (1) in the first method we fuzzify the crisp solution and then check to see if it solves the difference equation; and (2) in the second method we first solve the fuzzy difference equation and then check to see if the solution defines a fuzzy number. Relationships between these two solution methods are also presented. Two applications are given: (1) the first is about a second order difference equation, having fuzzy initial conditions, modeling national income; and (2) the second is from information theory modeling the transmission of information.


2017 ◽  
Vol 14 (1) ◽  
pp. 306-313
Author(s):  
Awad. A Bakery ◽  
Afaf. R. Abou Elmatty

We give here the sufficient conditions on the positive solutions of the difference equation xn+1 = α+M((xn−1)/xn), n = 0, 1, …, where M is an Orlicz function, α∈ (0, ∞) with arbitrary positive initials x−1, x0 to be bounded, α-convergent and the equilibrium point to be globally asymptotically stable. Finally we present the condition for which every positive solution converges to a prime two periodic solution. Our results coincide with that known for the cases M(x) = x in Ref. [3] and M(x) = xk, where k ∈ (0, ∞) in Ref. [7]. We have given the solution of open problem proposed in Ref. [7] about the existence of the positive solution which eventually alternates above and below equilibrium and converges to the equilibrium point. Some numerical examples with figures will be given to show our results.


1920 ◽  
Vol 39 ◽  
pp. 58-62 ◽  
Author(s):  
Bevan B. Baker

1. The Pincherle polynomials are defined as the coefficients in the expansion of {1 − 3 tx + t3}−½ in ascending powers of t. If the coefficient of tn be denoted by Pn(x), then the polynomials satisfy the difference equationand Pn(x) satisfies the differential equation


Sign in / Sign up

Export Citation Format

Share Document