scholarly journals Correction of finite difference eigenvalues of periodic Sturm-Liouville problems

Author(s):  
Alan L. Andrew

AbstractComputation of eigenvalues of regular Sturm-Liouville problems with periodic or semiperiodic boundary conditions is considered. A simple asymptotic correction technique of Paine, de Hoog and Anderssen is shown to reduce the error in the centred finite difference estimate of the kth eigenvalue obtained with uniform step length h from O(k4h2) to O(kh2). Possible extensions of the results are suggested and the relative advantages of the method are discussed.

2006 ◽  
Vol 11 (1) ◽  
pp. 47-78 ◽  
Author(s):  
S. Pečiulytė ◽  
A. Štikonas

The Sturm-Liouville problem with various types of two-point boundary conditions is considered in this paper. In the first part of the paper, we investigate the Sturm-Liouville problem in three cases of nonlocal two-point boundary conditions. We prove general properties of the eigenfunctions and eigenvalues for such a problem in the complex case. In the second part, we investigate the case of real eigenvalues. It is analyzed how the spectrum of these problems depends on the boundary condition parameters. Qualitative behavior of all eigenvalues subject to the nonlocal boundary condition parameters is described.


2010 ◽  
Vol 7 ◽  
pp. 182-190
Author(s):  
I.Sh. Nasibullayev ◽  
E.Sh. Nasibullaeva

In this paper the investigation of the axisymmetric flow of a liquid with a boundary perpendicular to the flow is considered. Analytical equations are derived for the radial and axial velocity and pressure components of fluid flow in a pipe of finite length with a movable right boundary, and boundary conditions on the moving boundary are also defined. A numerical solution of the problem on a finite-difference grid by the iterative Newton-Raphson method for various velocities of the boundary motion is obtained.


Robotica ◽  
2021 ◽  
pp. 1-12
Author(s):  
Xu-Qian Fan ◽  
Wenyong Gong

Abstract Path planning has been widely investigated by many researchers and engineers for its extensive applications in the real world. In this paper, a biharmonic radial basis potential function (BRBPF) representation is proposed to construct navigation fields in 2D maps with obstacles, and it therefore can guide and design a path joining given start and goal positions with obstacle avoidance. We construct BRBPF by solving a biharmonic equation associated with distance-related boundary conditions using radial basis functions (RBFs). In this way, invalid gradients calculated by finite difference methods in large size grids can be preventable. Furthermore, paths constructed by BRBPF are smoother than paths constructed by harmonic potential functions and other methods, and plenty of experimental results demonstrate that the proposed method is valid and effective.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Maozhu Zhang ◽  
Kun Li ◽  
Hongxiang Song

AbstractIn this paper we consider singular Sturm–Liouville problems with eigenparameter dependent boundary conditions and two singular endpoints. The spectrum of such problems can be approximated by those of the inherited restriction operators constructed. Via the abstract operator theory, the strongly resolvent convergence and norm resolvent convergence of a sequence of operators are obtained and it follows that the spectral inclusion of spectrum holds. Moreover, spectral exactness of spectrum holds for two special cases.


Sign in / Sign up

Export Citation Format

Share Document