The Web of the Universe: Jung, the “New Physics” and Human Spirituality. By John Hitchcock. New York: Paulist, 1991. ix + 243 pages. $11.95.

Horizons ◽  
1993 ◽  
Vol 20 (2) ◽  
pp. 370-371
Author(s):  
Michael Barnes
Universe ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 222
Author(s):  
Maxim Khlopov

A.D. Sakharov’s legacy in now standard model of the Universe is not reduced to baryosynthesis but extends to the foundation of cosmoparticle physics, which studies the fundamental relationship of cosmology and particle physics. Development of cosmoparticle physics involves cross-disciplinary physical, astrophysical and cosmological studies of physics Beyond the Standard model (BSM) of elementary particles. To probe physical models for inflation, baryosynthesis and dark matter cosmoparticle physics pays special attention to model dependent messengers of the corresponding models, making their tests possible. Positive evidence for such exotic phenomena as nuclear interacting dark atoms, primordial black holes or antimatter globular cluster in our galaxy would provide the selection of viable BSM models determination of their parameters.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Lorenzo Calibbi ◽  
Francesco D’Eramo ◽  
Sam Junius ◽  
Laura Lopez-Honorez ◽  
Alberto Mariotti

Abstract Displaced vertices at colliders, arising from the production and decay of long-lived particles, probe dark matter candidates produced via freeze-in. If one assumes a standard cosmological history, these decays happen inside the detector only if the dark matter is very light because of the relic density constraint. Here, we argue how displaced events could very well point to freeze-in within a non-standard early universe history. Focusing on the cosmology of inflationary reheating, we explore the interplay between the reheating temperature and collider signatures for minimal freeze-in scenarios. Observing displaced events at the LHC would allow to set an upper bound on the reheating temperature and, in general, to gather indirect information on the early history of the universe.


Traditio ◽  
2012 ◽  
Vol 67 ◽  
pp. 235-276
Author(s):  
Barbara Obrist

TheLiber de orbe, attributed to Māshā'allāh (fl. 762–ca. 815) in the list of Gerard of Cremona's translations, stands out as one of the few identifiable sources for the indirect knowledge of Peripatetic physics and cosmology at the very time Aristotle's works on natural philosophy themselves were translated into Latin, from the 1130s onward. This physics is expounded in an opening series of chapters on the bodily constitution of the universe, while the central section of the treatise covers astronomical subjects, and the remaining parts deal with meteorology and the vegetal realm. Assuming that Gerard of Cremona's translation of theLiber de orbecorresponds to the twenty-seven chapter version that circulated especially during the thirteenth and fourteenth centuries, it was, however, not this version, but a forty-chapter expansion thereof that became influential as early as the 1140s. It may have originated in Spain, as indicated, among others, by a reference to the difference of visibility of a lunar eclipse between Spain and Mecca. Unlike the twenty-seven chapterLiber de orbe, this expanded and also partly modified text remains in manuscript, and none of the three copies known so far gives a title or mentions Māshā'allāh as an author. Instead, the thirteenth-century witness that is now in New York attributes the work to an Alcantarus:Explicit liber Alcantari Caldeorum philosophi. While no Arabic original of the twenty-seven chapterLiber de orbehas come to light yet, Taro Mimura of the University of Manchester recently identified a manuscript that partly corresponds to the forty-chapter Latin text, as well as a shorter version thereof.


Sign in / Sign up

Export Citation Format

Share Document