A Visual Interpretation of an ERS- I SAR Image of the Thames Estuary

1995 ◽  
Vol 48 (1) ◽  
pp. 97-104
Author(s):  
S. T. Culshaw

This paper examines a Synthetic Aperture Radar (SAR) image of the Thames Estuary aided by the relevant nautical chart, tidal, weather and shipping information of the area. By correlating this information it is possible to identify gross sediment transport which would otherwise be hard and financially expensive to detect. Seabed topography, seabed pipelines, some shipping, coastal zone features and different water parcels can be identified.

2019 ◽  
Vol 11 (14) ◽  
pp. 1637 ◽  
Author(s):  
Filippo Biondi ◽  
Pia Addabbo ◽  
Danilo Orlando ◽  
Carmine Clemente

In this paper, we propose a novel strategy to estimate the micro-motion (m-m) of ships from synthetic aperture radar (SAR) images. To this end, observe that the problem of motion and m-m detection of targets is usually solved using synthetic aperture radar (SAR) along-track interferometry through two radars spatially separated by a baseline along the azimuth direction. The approach proposed in this paper for m-m estimation of ships, occupying thousands of pixels, processes the information generated during the coregistration of several re-synthesized time-domain and not overlapped Doppler sub-apertures. Specifically, the SAR products are generated by splitting the raw data according to a temporally small baseline using one single wide-band staring spotlight (ST) SAR image. The predominant vibrational modes of different ships are then estimated. The performance analysis is conducted on one ST SAR image recorded by COSMO-SkyMed satellite system. Finally, the newly proposed approach paves the way for application to the surveillance of land-based industry activities.


2014 ◽  
Vol 33 (11) ◽  
pp. 141-149 ◽  
Author(s):  
Lihua Wang ◽  
Yunxuan Zhou ◽  
Jianzhong Ge ◽  
Johnny A. Johannessen ◽  
Fang Shen

Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 373 ◽  
Author(s):  
Yuri Álvarez López ◽  
María García Fernández ◽  
Raphael Grau ◽  
Fernando Las-Heras

This contribution presents a simple and fast Synthetic Aperture Radar (SAR)-based technique for microwave imaging and material characterization from microwave measurements acquired in tomographic systems. SAR backpropagation is one of the simplest and fastest techniques for microwave imaging. However, in the case of heterogeneous objects and media, a priori information about the constitutive parameters (conductivity, permittivity) is needed for an accurate imaging. In some cases, a first guess of the constitutive parameters can be extracted from an uncorrected SAR image, and then the estimated parameters can be introduced in a second step to correct the SAR image. The main advantage of this methodology is that there is little or no need for a priori information about the object to be imaged. Besides, calculation time is not significantly increased with respect to conventional SAR, thus allowing real-time imaging capabilities. The methodology has been validated by means of measurements acquired in a cylindrical setup.


1982 ◽  
Vol 21 (1) ◽  
pp. 210148 ◽  
Author(s):  
R. H. Mitchel ◽  
Stanley Marder

Author(s):  
Filippo Biondi

This research aims to estimate the micro-motion (m-m) of ships. The problem of motion and m-m detection of targets is usually solved using synthetic aperture radar (SAR) along-track interferometry (ATI) which is observed employing two radars spatially distanced by a baseline extended in the azimuth direction. This paper is proposing a new approach where the m-m estimation of ships, occupying thousands of pixels, is measured processing the information given by sub-pixel tracking generated during the coregistration process of several re-synthesized time-domain and overlapped sub-apertures. The SAR products are generated splitting the raw data, according to a small-temporal baseline strategy, observed by one single wide-band staring spotlight (ST) SAR image. The predominant vibrational modes of different ships are estimated and results are promising to extend this application in performing surveillance also of land-based industries activities. Experiments are performed processing one ST SAR image observed by the COSMO-SkyMed satellite system.


Sign in / Sign up

Export Citation Format

Share Document