Empirical Evidence for the Effect of Tropical Deforestation on Climatic Change

1992 ◽  
Vol 19 (1) ◽  
pp. 39-47 ◽  
Author(s):  
Colin Clark

If large areas of tropical rain-forest are replaced by grassland, there is likely to be about 300 mm less evapo-transpiration and 650–800 mm less rainfall during each year in these areas than is currently experienced. Lower rates of evapotranspiration will allow more energy to be used for sensible heat, and this will lead to surface air temperatures that are higher than currently by about 3°C. Reduced cloud-cover will also lead to even higher temperatures, because clouds have a net cooling effect. When this additional heat is combined with the extrasensible heating, the overall effect is expected to be a rise in temperature of about 4–5°C.These contentions are based upon data obtained from ‘natural experiments’. They have given results which suggest that tropical deforestation will have a larger effect on temperature than was hitherto expected, and that the effect on both temperature and rainfall will be more widespread than has been expected hitherto. The effects on global climate cannot as yet be determined by a ‘natural experiment’.The removal of so much of the tropical rain-forest as is now projected will have such a dramatic effect on local and even wider climate that no further replacement of the rain-forest ecocomplex by others or other land-uses should be allowed to take place.

2018 ◽  
Vol 1 (2) ◽  
Author(s):  
Enio B. Pereira ◽  
Daniel J.R. Nordemann

Para solicitação de resumo, entrar em contato com editor-chefe ([email protected]). 


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Marieke van Beest ◽  
Antoine Bourget ◽  
Julius Eckhard ◽  
Sakura Schäfer-Nameki

Abstract 5d superconformal field theories (SCFTs) can be obtained from 6d SCFTs by circle compactification and mass deformation. Successive decoupling of hypermultiplet matter and RG-flow generates a decoupling tree of descendant 5d SCFTs. In this paper we determine the magnetic quivers and Hasse diagrams, that encode the Higgs branches of 5d SCFTs, for entire decoupling trees. Central to this undertaking is the approach in [1], which, starting from the generalized toric polygons (GTPs) dual to 5-brane webs/tropical curves, provides a systematic and succinct derivation of magnetic quivers and their Hasse diagrams. The decoupling in the GTP description is straightforward, and generalizes the standard flop transitions of curves in toric polygons. We apply this approach to a large class of 5d KK-theories, and compute the Higgs branches for their descendants. In particular we determine the decoupling tree for all rank 2 5d SCFTs. For each tree, we also identify the flavor symmetry algebras from the magnetic quivers, including non-simply-laced flavor symmetries.


2005 ◽  
Vol 11 ◽  
pp. 141-158 ◽  
Author(s):  
Russell W. Graham

Frequent and repeated climate fluctuations of the late Quaternary serve as a “natural experiment” for the response of species to environmental change. Analysis of the FAUNMAP database documents individualistic shifts in the geographic distributions for late Quaternary mammals. However, because the individualistic response is not necessarily random and because many species share similar niche parameters, it is possible that some species appear to form coherent groups of core species. In reality their dispersals are individualistic with regard to rate and timing. The individualistic response of mammals, as well as that of other organisms, has created late Quaternary communities without modern analogues. This concept has profound implications for the design of biological reserves and for land use management with respect to future global climate change. However, the relevance of non-analogue mammal communities has been challenged by Alroy (1999), who claims that non-analogue associations were not common in the Quaternary and that they appeared to occur in both the Pleistocene and Holocene. Reexamination of his analysis shows that he employed a different definition for non-analogue faunas and that his methods of analyses created artificially low counts of non-analogue communities and consequently an underestimate of their importance.


Ecology ◽  
1995 ◽  
Vol 77 (2) ◽  
pp. 568-580 ◽  
Author(s):  
David W. Lee ◽  
Krishnapillay Baskaran ◽  
Marzalina Mansor ◽  
Haris Mohamad ◽  
Son Kheong Yap

Sign in / Sign up

Export Citation Format

Share Document