Field Emission SEM Equipped With Noise Compensator

Author(s):  
S. Saito ◽  
H. Todokoro ◽  
S. Nomura ◽  
T. Komoda

Field emission scanning electron microscope (FESEM) features extremely high resolution images, and offers many valuable information. But, for a specimen which gives low contrast images, lateral stripes appear in images. These stripes are resulted from signal fluctuations caused by probe current noises. In order to obtain good images without stripes, the fluctuations should be less than 1%, especially for low contrast images. For this purpose, the authors realized a noise compensator, and applied this to the FESEM.Fig. 1 shows an outline of FESEM equipped with a noise compensator. Two apertures are provided gust under the field emission gun.

Author(s):  
L. M. Welter

A scanning electron microscope using a field emission electron source and a single electromagnetic lens can produce a resolution of less than 180Å using an accelerating voltage of only 900v. High resolution, low voltage (0.1-2kV) scanning microscopy offers a number of advantages over the use of higher accelerating voltages. Specimen damage may be reduced because the power (P≃IV) which must be absorbed by the specimen for operation at a given probe current (I) is decreased in proportion to the reduction in accelerating voltage (V).


2000 ◽  
Vol 6 (S2) ◽  
pp. 764-765
Author(s):  
H. Kazumori ◽  
A. Yamada ◽  
M. Mita ◽  
T. Nokuo ◽  
M. Saito

A newly developed cold FE-GUN which enables to us to obtain large probe current and low emission noise, and conical strongly excited objective lens has been installed on the JSM-6700F Scanning Electron Microscope (SEM). In the range of accelerating voltages from 0.5 to 15kV, this instrument has got much better resolution as compared with in-lens type SEM (Ohyama et al 1986)(Fig. 1). We can obtain high-resolution secondary electron images with large samples (ex. 150mm ϕ×10mmH).Our old type objective lens (Kazumori et al 1994) has the limitation of working distance (WD), but the new lens enables us to work at very short WD at accelerating voltage of 15kV. As a result the spherical (Cs) and chromatic (Cc) aberration constants are 1.9mm and 1.7mm respectively at a WD of 3mm.In order to get large probe current, we increased emission current and got near the distance between the t ip of emi tter and the pr inciple plane of condenser lens.


2013 ◽  
Vol 20 (1) ◽  
pp. 78-89 ◽  
Author(s):  
Eric Lifshin ◽  
Yudhishthir P. Kandel ◽  
Richard L. Moore

AbstractA method is presented for determining the point spread function (PSF) of an electron beam in a scanning electron microscope for the examination of near planar samples. Once measured, PSFs can be used with two or more low-resolution images of a selected area to create a high-resolution reconstructed image of that area. As an example, a 4× improvement in resolution for images is demonstrated for a fine gold particle sample. Since thermionic source instruments have high beam currents associated with large probe sizes, use of this approach implies that high-resolution images can be produced rapidly if the probe diameter is less of a limiting factor. Additionally, very accurate determination of the PSFs can lead to a better understanding of instrument performance as exemplified by very accurate measurement of the beam shape and therefore the degree of astigmatism.


2020 ◽  
Vol 50 (1) ◽  
Author(s):  
Jihun Kang ◽  
Eun-Hye Kang ◽  
Young-Shik Yun ◽  
Seungmuk Ji ◽  
In-Sik Yun ◽  
...  

AbstractThe biocompatible polyurethane acrylate (PUA) nanopillars were fabricated by soft lithography using three different sizes of nanobeads (350, 500, and 1000 nm), and the human adipose-derived stem cells (hASCs) were cultured on the nanopillars. The hASCs and their various behaviors, such as cytoplasmic projections, migration, and morphology, were observed by high resolution images using a scanning electron microscope (SEM). With the accurate analysis by SEM for the controlled sizes of nanopillars, the deflections are observed at pillars fabricated with 350- and 500-nm nanobeads. These high-resolution images could offer crucial information to elucidate the complicated correlations between nanopillars and the cells, such as morphology and cytoplasmic projections.


AI ◽  
2019 ◽  
Vol 1 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Gao ◽  
Ma ◽  
Huang ◽  
Hua ◽  
Lan

A field emission scanning electron microscope (FESEM) is a complex scanning electron microscope with ultra-high-resolution image scanning, instant printing, and output storage capabilities. FESEMs have been widely used in fields such as materials science, biology, and medical science. However, owing to the balance between resolution and field of view (FOV), when locating a target using an FESEM, it is difficult to view specific details in an image with a large FOV and high resolution simultaneously. This paper presents a deep neural network to realize super-resolution of an FESEM image. This technology can effectively improve the resolution of the acquired image without changing the physical structure of the FESEM, thus resolving the constraint problem between the resolution and FOV. Experimental results show that the apply of a deep neural network only requires a single image acquired by an FESEM to be the input. A higher resolution image with a large FOV and excellent noise reduction is obtained within a short period of time. To verify the effect of the model numerically, we evaluated the image quality by using the peak signal-to-noise ratio value and structural similarity index value, which can reach 26.88 dB and 0.7740, respectively. We believe that this technology will improve the quality of FESEM imaging and be of significance in various application fields.


Sign in / Sign up

Export Citation Format

Share Document