Traffic to the endocytic compartment of plants

Author(s):  
L. R. Griffing ◽  
R. D. Record ◽  
H. H. Mollenhauer

The endocytic pathway of plants has been identified and partially characterized using nonspecific membrane-bound and fluid phase probes . The function of endocytosis in plants is, however, unknown. We shall describe how ultrastructural histochemistry, immunocytochemical analyses and fluorescence imaging have been used to explore the physiology and function of the endocytic pathway in plant protoplasts and whole cells.Cationized ferritin (CF) can be used as a marker of plasma membrane uptake in plant protoplasts. Several different organelles become labeled upon exposure of protoplasts to CF: clathrin-coated vesicles (CV), the partially coated reticulum (PCR), the Golgi complex (GC), the multivesicular body (MVB), and the vacuole (V). These organelles also participate in the pathways of secretion and delivery of protein to the lysosome (vacuole). What are the sites of overlap/divergence among the secretory, endocytic and lysosomal pathways in these cells?

2001 ◽  
Vol 114 (22) ◽  
pp. 4041-4049 ◽  
Author(s):  
Rosana Mesa ◽  
Cristina Salomón ◽  
Marcelo Roggero ◽  
Philip D. Stahl ◽  
Luis S. Mayorga

Soon after endocytosis, internalized material is sorted along different pathways in a process that requires the coordinated activity of several Rab proteins. Although abundant information is available about the subcellular distribution and function of some of the endocytosis-specific Rabs (e.g. Rab5 and Rab4), very little is known about some other members of this family of proteins. To unveil some of the properties of Rab22a, one of the less studied endosome-associated small GTPases, we have expressed the protein tagged with the green fluorescent protein in CHO cells. The results indicate that Rab22a associates with early and late endosomes (labeled by a 5 minute rhodamine-transferrin uptake and the cation-independent mannose 6-phosphate receptor, respectively) but not with lysosomes (labeled by 1 hour rhodamine horseradish peroxidase uptake followed by 1 hour chase). Overexpression of the protein causes a prominent morphological enlargement of the early and late endosomes. Two mutants were generated by site-directed mutagenesis, a negative mutant (Rab22aS19N, with reduced affinity for GTP) and a constitutively active mutant (Rab22aQ64L, with reduced endogenous GTPase activity). The distribution of the negative mutant was mostly cytosolic, whereas the positive mutant associated with early and late endosomes and, interestingly also with lysosomes and autophagosomes (labeled with monodansylcadaverine). Cells expressing Rab22a wild type and Rab22aS19N displayed decreased endocytosis of a fluid phase marker. Conversely, overexpression of Rab22aQ64L, which strongly affects the morphology of endosomes, did not inhibit bulk endocytosis. Our results show that Rab22a has a unique distribution along the endocytic pathway that is not shared by any other Rab protein, and that it strongly affects the morphology and function of endosomes.


1992 ◽  
Vol 103 (4) ◽  
pp. 1139-1152
Author(s):  
J.W. Kok ◽  
K. Hoekstra ◽  
S. Eskelinen ◽  
D. Hoekstra

Recycling pathways of the sphingolipid glucosylceramide were studied by employing a fluorescent analog of glucosylceramide, 6(-)[N-(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]hexanoylglucosyl sphingosine (C6-NBD-glucosylceramide). Direct recycling of the glycolipid from early endosomes to the plasma membrane occurs, as could be shown after treating the cells with the microtubule-disrupting agent nocodazole, which causes inhibition of the glycolipid's trafficking from peripheral early endosomes to centrally located late endosomes. When the microtubuli are intact, at least part of the glucosylceramide is transported from early to late endosomes together with ricin. Interestingly, also N-(lissamine rhodamine B sulfonyl)phosphatidylethanolamine (N-Rh-PE), a membrane marker of the fluid-phase endocytic pathway, is transported to this endosomal compartment. However, in contrast to both ricin and N-Rh-PE, the glucosylceramide can escape from this organelle and recycle to the plasma membrane. Monensin and brefeldin A have little effect on this recycling pathway, which would exclude extensive involvement of early Golgi compartments in recycling. Hence, the small fraction of the glycolipid that colocalizes with transferrin (Tf) in the Golgi area might directly recycle via the trans-Golgi network. When the intracellular pH was lowered to 5.5, recycling was drastically reduced, in accordance with the impeding effect of low intracellular pH on vesicular transport during endocytosis and in the biosynthetic pathway. Our results thus demonstrate the existence of at least two recycling pathways for glucosylceramide and indicate the relevance of early endosomes in recycling of both proteins and lipids.


2021 ◽  
Author(s):  
George M. Otto ◽  
Tia Cheunkarndee ◽  
Jessica M. Leslie ◽  
Gloria A. Brar

AbstractThe endoplasmic reticulum (ER) is a membrane-bound organelle with diverse, essential functions that rely on the maintenance of membrane shape and distribution within cells. ER structure and function are remodeled in response to changes in cellular demand, such as the presence of external stressors or the onset of cell differentiation, but mechanisms controlling ER remodeling during cell differentiation are not well understood. Here, we describe a series of developmentally regulated changes in ER morphology and composition during budding yeast meiosis, a conserved differentiation program that gives rise to gametes. During meiosis, the cortical ER undergoes fragmentation before collapsing away from the plasma membrane at anaphase II. This programmed collapse depends on the meiotic transcription factor Ndt80, conserved ER membrane structuring proteins Lnp1 and reticulons, and the actin cytoskeleton. A subset of ER is retained at the mother cell plasma membrane and excluded from gamete cells via the action of ER-plasma membrane tethering proteins. ER remodeling is coupled to ER degradation by selective autophagy, which is regulated by the developmentally timed expression of the autophagy receptor Atg40. Autophagy relies on ER collapse, as artificially targeting ER proteins to the cortically retained ER pool prevents their degradation. Thus, developmentally programmed changes in ER morphology determine the selective degradation or inheritance of ER subdomains by gametes.


1978 ◽  
Vol 31 (1) ◽  
pp. 165-178
Author(s):  
J.A. Grasso ◽  
A.L. Sullivan ◽  
S.C. Chan

Erythropoietic cells of 5 species, including man, contain endoplasmic reticulum present as individual cisternae or tubules scattered throughout the cytoplasm of all stages except mature RBCs. The endoplasmic reticulum is mainly agranular but occurs frequently as a variant of granular ER which is characterized by an asymmetrical and irregular distribution of ribosomes along one cytoplasmic face. In most cells, the endoplasmic reticulum occurs in close proximity to mitochondria or the plasma membrane, suggesting that the organelle may be involved in functions related to these structures, e.g. haem biosynthesis. Endoplasmic reticulum is more abundant in early than in late erythroid cells. Its exact role in RBC development is unclear. Since endoplasmic reticulum could account for ‘plasma membrane-bound ribosomes’ reported in lysed reticulocytes, studies were performed which ruled out this possibility and which suggested that such ribosomes were an artifact of the lysing conditions. Hypotonic lysis in less than 20 vol. of magnesium-containing buffers yielded ghosts variably contaminated by ribosomes and other structures. Lysis of reticulocytes in 20–30 vol. of magnesium-free buffer or homogenization of whole cells or crude membrane fractions in hypotonic buffer removed virtually all contaminating ribosomes from the purified membrane fraction.


1974 ◽  
Vol 22 (12) ◽  
pp. 1128-1134 ◽  
Author(s):  
ARIANE MONNERON ◽  
JEAN-CLAUDE BENICHOU ◽  
INSTITUT PASTEUR ◽  
YVETTE FLORENTIN ◽  
ELIANE GUERRY

Calf thymocytes in suspension, as well as isolated calf thymocyte nuclei, were incubated in the presence of several phosphorylated substrates. 5'-Nucleotidase was easily detected on the plasma membrane of thymocytes (external side), but could be demonstrated on isolated nuclei only to a small extent. No other substrates were detectably hydrolyzed by isolated nuclei except adenosine triphosphate and 3'-thymidine monophosphate. The surface of whole cells was found to be much more reactive. A 3'-nucleotidase activity was shown to occur on the plasma membrane of a number of thymocytes and produced large lead phosphate deposits, some of them protruding into the cytoplasm. Enzymic activities splitting β-nicotinamide adenine dinucleotide phosphate and uridine diphosphate glucose were also readily detectable on the surface of cells. Since the pattern of the lead phosphate deposits and the number of reactive cells varied with the added substrate, and since cells were compared with their isolated nuclei, the positive reactions were considered to indicate the presence (on the exposed membranes) of the corresponding enzymes on the exposed membranes.


1988 ◽  
Vol 106 (2) ◽  
pp. 253-267 ◽  
Author(s):  
B van Deurs ◽  
K Sandvig ◽  
OW Petersen ◽  
S Olsnes ◽  
K Simons ◽  
...  

We have used a protocol for internalization of ricin, a ligand binding to plasma membrane glycoproteins and glycolipids with terminal galactosyl residues, and infection with the vesicular stomatitis virus ts 045 mutant in BHK-21 cells to determine whether internalized plasma membrane molecules tagged by ricin reach distinct compartments of the biosynthetic-exocytic pathway. At 39.5 degrees C newly synthesized G protein of ts 045 was largely prevented from leaving the endoplasmic reticulum. At the same temperature ricin was endocytosed and reached, in addition to endosomes and lysosomes, elements of the Golgi complex. When the temperature was lowered to 19.5 degrees C, no more ricin was delivered to the Golgi complex, but now G protein accumulated in the Golgi stacks and the trans-Golgi network (TGN). Double-labeling immunogold cytochemistry on ultracryosections was used to detect G protein and ricin simultaneously. These data, combined with stereological and biochemical methods, showed that approximately 5% of the total amount of ricin within the cells, corresponding to 6-8 X 10(4) molecules per cell, colocalized with G protein in the Golgi complex after 60 min at 39.5 degrees C. Of this amount approximately 70-80% was present in the TGN. Since most of the ricin molecules remain bound to their binding sites at the low pH prevailing in compartments of the endocytic pathway, the results indicate that a fraction of the internalized plasma membrane molecules with terminal galactose are not recycled directly from endosomes or delivered to lysosomes, but are routed to the Golgi complex. Also, the results presented here, in combination with other recent studies on ricin internalization, suggest that translocation of the toxic ricin A-chain to the cytosol occurs in the TGN.


1988 ◽  
Vol 107 (3) ◽  
pp. 887-896 ◽  
Author(s):  
T H Steinberg ◽  
J A Swanson ◽  
S C Silverstein

After the membrane impermeant dye Lucifer Yellow is introduced into the cytoplasmic matrix of J774 cells, the dye is sequestered within cytoplasmic vacuoles and secreted into the extracellular medium. In the present work we studied the intracellular transport of Lucifer Yellow in J774 macrophages and the nature of the cytoplasmic vacuoles into which this dye is sequestered. When the lysosomal system of J774 cells was prelabeled with a Texas red ovalbumin conjugate and Lucifer Yellow was then loaded into the cytoplasm of the cells by ATP-mediated permeabilization of the plasma membrane, the vacuoles that sequestered Lucifer Yellow 30 min later were distinct from the Texas red-stained lysosomes. After an additional 30 min Lucifer Yellow and Texas red colocalized in the same membrane bound compartments, indicating that the Lucifer Yellow had been delivered to lysosomes. We next prelabeled the plasma membrane of J774 cells with anti-macrophage antibody and Texas red protein A before Lucifer Yellow was loaded into the cells. The phase-lucent vacuoles that subsequently sequestered Lucifer Yellow also stained with Texas red, showing that they were part of the endocytic pathway. J774 cells were fractionated on percoll density gradients either 15 or 60 min after Lucifer Yellow was introduced into the cytoplasmic matrix of the cells. In cells fractionated after 15 min, Lucifer Yellow was contained within the fractions of light buoyant density that contain plasma membrane and endosomes; the dye later appeared in vesicles of higher density which contained lysosomes. Secretion of Lucifer Yellow from the cytoplasmic matrix of J774 cells is inhibited by the organic anion transport blocker probenecid. We found that probenecid also reversibly inhibited sequestration of dye, indicating that sequestration of dye within cytoplasmic vacuoles was also mediated by organic anion transporters. These studies show that the vacuoles that sequester Lucifer Yellow from the cytoplasmic matrix of J774 cells possess the attributes of endosomes. Thus, in addition to their role in sorting of membrane bound and soluble substances, macrophage endosomes may play a role in the accumulation and transport of molecules resident in the soluble cytoplasm.


Cells ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 119 ◽  
Author(s):  
Mengxue Wang ◽  
Xifeng Li ◽  
Shuwei Luo ◽  
Baofang Fan ◽  
Cheng Zhu ◽  
...  

In eukaryotic cells, autophagosomes and multivesicular bodies (MVBs) are two closely related partners in the lysosomal/vacuolar protein degradation system. Autophagosomes are double membrane-bound organelles that transport cytoplasmic components, including proteins and organelles for autophagic degradation in the lysosomes/vacuoles. MVBs are single-membrane organelles in the endocytic pathway that contain intraluminal vesicles whose content is either degraded in the lysosomes/vacuoles or recycled to the cell surface. In plants, both autophagosome and MVB pathways play important roles in plant responses to biotic and abiotic stresses. More recent studies have revealed that autophagosomes and MVBs also act together in plant stress responses in a variety of processes, including deployment of defense-related molecules, regulation of cell death, trafficking and degradation of membrane and soluble constituents, and modulation of plant hormone metabolism and signaling. In this review, we discuss these recent findings on the coordination and crosstalk between autophagosome and MVB pathways that contribute to the complex network of plant stress responses.


2000 ◽  
Vol 150 (5) ◽  
pp. 1013-1026 ◽  
Author(s):  
Eva M. Neuhaus ◽  
Thierry Soldati

Geometry-based mechanisms have been proposed to account for the sorting of membranes and fluid phase in the endocytic pathway, yet little is known about the involvement of the actin–myosin cytoskeleton. Here, we demonstrate that Dictyostelium discoideum myosin IB functions in the recycling of plasma membrane components from endosomes back to the cell surface. Cells lacking MyoB (myoA−/B−, and myoB− cells) and wild-type cells treated with the myosin inhibitor butanedione monoxime accumulated a plasma membrane marker and biotinylated surface proteins on intracellular endocytic vacuoles. An assay based on reversible biotinylation of plasma membrane proteins demonstrated that recycling of membrane components is severely impaired in myoA/B null cells. In addition, MyoB was specifically found on magnetically purified early pinosomes. Using a rapid-freezing cryoelectron microscopy method, we observed an increased number of small vesicles tethered to relatively early endocytic vacuoles in myoA−/B− cells, but not to later endosomes and lysosomes. This accumulation of vesicles suggests that the defects in membrane recycling result from a disordered morphology of the sorting compartment.


Sign in / Sign up

Export Citation Format

Share Document