Phenytoin sodium monohydrate, C15H11N2O2Na(H2O)

2018 ◽  
Vol 33 (2) ◽  
pp. 178-179
Author(s):  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of phenytoin sodium monohydrate at 295 K has been refined using synchrotron powder diffraction data, and optimized using density functional techniques.

Crystals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 384 ◽  
Author(s):  
Zachary R. Butler ◽  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of fosfomycin tromethamine has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Fosfomycin tromethamine crystallizes in space group P1 (#1) with a = 6.20421(6), b = 9.00072(7), c = 10.91257(15) Å, α = 93.4645(5), β = 101.9734(3), γ = 99.9183(2)°, V = 584.285(2) Å3, and Z = 2. A network of discrete hydrogen bonds links the cations and anions into layers parallel to the ab-plane. The outer surfaces of the layers are composed of the methyloxirane rings of the anions and the methylene groups of the cations. Furthermore, 93% of the atoms are consistent with an additional (pseudo)center of symmetry. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™.


2014 ◽  
Vol 29 (3) ◽  
pp. 269-273 ◽  
Author(s):  
James A. Kaduk ◽  
Cyrus E. Crowder ◽  
Kai Zhong ◽  
Timothy G. Fawcett ◽  
Matthew R. Suchomel

Commercial atomoxetine hydrochloride crystallizes in the orthorhombic space group P212121 (#19), with a = 7.362 554(12), b = 13.340 168(27), c = 16.701 887(33) Å, V = 1640.421(5) Å3, and Z = 4. The structure was solved and refined using synchrotron powder diffraction data, and Rietveld and density functional techniques. The most prominent feature of the structure is zigzag chains of N–H···Cl hydrogen bonds along the a-axis. The powder pattern has been submitted to the ICDD for inclusion in future releases of the Powder Diffraction File™.


Author(s):  
Andrew J. Cigler ◽  
James A. Kaduk

The crystal structure of poly[μ-citrato-dilithium(I)potassium(I)], [Li2K(C6H5O7)] n , has been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques. The citrate anion triply chelates to the K+ cation through the hydroxyl group, the central carboxylate, and the terminal carboxylate. The KO7 coordination polyhedra share edges, forming chains parallel to the a axis. These chains share edges with one tetrahedral Li ion, and are bridged by edge-sharing pairs of the second tetrahedral Li ion, forming layers parallel to the ac plane.


2016 ◽  
Vol 72 (8) ◽  
pp. 1159-1162 ◽  
Author(s):  
Alagappa Rammohan ◽  
James A. Kaduk

The crystal structure of anhydrous tripotassium citrate, [K3(C6H5O7)]n, has been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques. The three unique potassium cations are 6-, 8-, and 6-coordinate (all irregular). The [KOn] coordination polyhedra share edges and corners to form a three-dimensional framework, with channels running parallel to thecaxis. The only hydrogen bond is an intramolecular one involving the hydroxy group and the central carboxylate group, with graph-set motifS(5).


Author(s):  
Alagappa Rammohan ◽  
James A. Kaduk

The crystal structure of trirubidium citrate, 3Rb+·C6H5O73−, has been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques. The two independent Rb+cations are seven- and eight-coordinate, with bond-valence sums of 0.99 and 0.92 valence units. The coordination polyhedra share edges and corners to form a three-dimensional framework. The only hydrogen bond is an intramolecular one between the hydroxy group and the central carboxylate, with graph setS(5). The hydrophobic methylene groups lie in pockets in the framework.


Author(s):  
Alagappa Rammohan ◽  
James A. Kaduk

The crystal structure of the title compound, 3Rb+·C6H5O73−·H2O, has been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques. The hydroxy group participates in an intramolecular hydrogen bond to the deprotonated central carboxylate group with graph-set motifS(5). The water molecule acts as a hydrogen-bond donor to both terminal and central carboxylate O atoms. The three independent rubidium cations are seven-, six- and six-coordinate, with bond-valence sums of 0.84, 1.02, and 0.95, respectively. In the extended structure, their polyhedra share edges and corners to form a three-dimensional network. The hydrophobic methylene groups occupy channels along thebaxis.


Author(s):  
Alagappa Rammohan ◽  
James A. Kaduk

The crystal structure of dirubidium hydrogen citrate, 2Rb+·HC6H5O72−, has been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques. The un-ionized carboxylic acid group forms helical chains of very strong hydrogen bonds (O...O ∼ 2.42 Å) along thebaxis. The hydroxy group participates in a chain of intra- and intermolecular hydrogen bonds along thecaxis. These hydrogen bonds result in corrugated hydrogen-bonded layers in thebcplane. The Rb+cations are six-coordinate, and share edges and corners to form layers in theabplane. The interlayer contacts are composed of the hydrophobic methylene groups.


Sign in / Sign up

Export Citation Format

Share Document