Study of CoxPt1−x nanoalloy formation mechanism via single-source precursors

2019 ◽  
Vol 34 (S1) ◽  
pp. S27-S31
Author(s):  
E. Yu. Filatov ◽  
A. V. Zadesenets ◽  
S. V. Komogortsev ◽  
P. E. Plyusnin ◽  
A. A. Chepurov ◽  
...  

This paper is devoted to the study of formation mechanism of metal solid solutions during the thermolysis of single-source precursors in Co–Pt systems with a wide range of superstructural ordering. It is shown that the thermal decomposition of [Pt(NH3)4][Co(C2O4)2(H2O)2]·2H2O salt in helium is critically different from that under hydrogen atmospheres. Thermal degradation under the helium atmosphere is followed by a gradual reduction of platinum and cobalt, and at each thermolysis temperature only one phase is present. At 380 °C an equiatomic Co0.50Pt0.50 solid solution is formed (a = 3.749 (4) Å, Fm−3m space group, V/Z = 13.17 Å3, crystallite size: 5–7 nm). When the precursor is decomposed under a hydrogen atmosphere, the process proceeds mainly through the simultaneous reduction of the platinum and cobalt atoms, and at each temperature section two metal phases are present. The formation of the close to equiatomic Co0.50Pt0.50 solid solution (a = 3.782 (4) Å, Fm−3m space group, V/Z = 13.52 Å3, crystallite size: 7–9 nm) occurs at 450 °C. The calculations of crystallite sizes are confirmed by transmission electron microscopy data.

1989 ◽  
Vol 22 (6) ◽  
pp. 578-583 ◽  
Author(s):  
D. K. Suri ◽  
K. C. Nagpal ◽  
G. K. Chadha

The semiconducting compound CuGa x In1 − x Se2 crystallizes in the chalcopyrite structure (space group I{\bar 4}2d, Z = 4). The X-ray powder data for x = 1, 0.75, 0.6, 0.5, 0.4, 0.25 and 0.0 have been collected and it is found that the lattice parameters a and c and their ratio c/a vary linearly with x. Thus the composition of any chalcopyrite in the pseudo-binary system CuGaSe2 and CuInSe2 can be obtained from the accurate lattice parameters. The crystallite size determined from the (112) plane is minimum for x = 0.50 (~ 1000 Å) and away from x = 0.50 it increases. A value of u = 0.240 (5) has been established for fixing the Se-atom positions in the CuGa0.5In0.5Se2 solid solution. The JCPDS Diffraction File No. for CuInSe2 is 40-1487 and for CuGa0.5In0.5Se2 is 40-1488.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3357
Author(s):  
Péter Nagy ◽  
Nadia Rohbeck ◽  
Zoltán Hegedűs ◽  
Johann Michler ◽  
László Pethö ◽  
...  

A nanocrystalline Co-Cr-Ni-Fe compositional complex alloy (CCA) film with a thickness of about 1 micron was produced by a multiple-beam-sputtering physical vapor deposition (PVD) technique. The main advantage of this novel method is that it does not require alloy targets, but rather uses commercially pure metal sources. Another benefit of the application of this technique is that it produces compositional gradient samples on a disk surface with a wide range of elemental concentrations, enabling combinatorial analysis of CCA films. In this study, the variation of the phase composition, the microstructure (crystallite size and defect density), and the mechanical performance (hardness and elastic modulus) as a function of the chemical composition was studied in a combinatorial Co-Cr-Ni-Fe thin film sample that was produced on a surface of a disk with a diameter of about 10 cm. The spatial variation of the crystallite size and the density of lattice defects (e.g., dislocations and twin faults) were investigated by X-ray diffraction line profile analysis performed on the patterns taken by synchrotron radiation. The hardness and the elastic modulus were measured by the nanoindentation technique. It was found that a single-phase face-centered cubic (fcc) structure was formed for a wide range of chemical compositions. The microstructure was nanocrystalline with a crystallite size of 10–27 nm and contained a high lattice defect density. The hardness and the elastic modulus values measured for very different compositions were in the ranges of 8.4–11.8 and 182–239 GPa, respectively.


2018 ◽  
Vol 480 ◽  
pp. 189-196 ◽  
Author(s):  
Anh H.T. Nguyen ◽  
Jacob L. Tennant ◽  
Leah J. Maxton ◽  
Andrew W. Holland

Sign in / Sign up

Export Citation Format

Share Document