Crystal structure of atropine sulfate monohydrate, (C17H24NO3)2(SO4)·(H2O)

2019 ◽  
Vol 34 (4) ◽  
pp. 389-395 ◽  
Author(s):  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of atropine sulfate monohydrate has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Atropine sulfate monohydrate crystallizes in space group P21/n (#14) with a = 19.2948(5), b = 6.9749(2), c = 26.9036(5) Å, β = 94.215(2)°, V = 3610.86(9) Å3, and Z = 4. Each of the two independent protonated nitrogen atoms participates in a strong hydrogen bond to the sulfate anion. Each of the two independent hydroxyl groups acts as a donor in a hydrogen bond to the sulfate anion, but only one of the water molecule hydrogen atoms acts as a hydrogen bond donor to the sulfate anion. The hydrogen bonds are all discrete but link the cations, anion, and water molecule along [101]. Although atropine and hyoscyamine (atropine is racemic hyoscyamine) crystal structures share some features, such as hydrogen bonding and phenyl–phenyl packing, the powder patterns show that the structures are very different. The powder pattern for atropine sulfate monohydrate has been submitted to ICDD for inclusion in the Powder Diffraction File™.

2016 ◽  
Vol 31 (2) ◽  
pp. 97-103 ◽  
Author(s):  
James A. Kaduk ◽  
Kai Zhong ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of rivastigmine hydrogen tartrate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Rivastigmine hydrogen tartrate crystallizes in space group P21 (#4) with a = 17.538 34(5), b = 8.326 89(2), c = 7.261 11(2) Å, β = 98.7999(2)°, V = 1047.929(4) Å3, and Z = 2. The un-ionized end of the hydrogen tartrate anions forms a very strong hydrogen bond with the ionized end of another anion to form a chain. The ammonium group of the rivastigmine cation forms a strong discrete hydrogen bond with the carbonyl oxygen atom of the un-ionized end of the tartrate anion. These hydrogen bonds form a corrugated network in the bc-plane. Both hydroxyl groups of the tartrate anion form intramolecular O–H⋯O hydrogen bonds. Several C–H⋯O hydrogen bonds appear to contribute to the crystal energy. The powder pattern is included in the Powder Diffraction File™ as entry 00-064-1501.


2021 ◽  
pp. 1-7
Author(s):  
Nilan V. Patel ◽  
Joseph T. Golab ◽  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of tamsulosin hydrochloride has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Tamsulosin hydrochloride crystallizes in space group P21 (#4) with a = 7.62988(2), b = 9.27652(2), c = 31.84996(12) Å, β = 93.2221(2)°, V = 2250.734(7) Å3, and Z = 4. In the crystal structure, two arene rings are connected by a carbon chain oriented roughly parallel to the c-axis. The crystal structure is characterized by two slabs of tamsulosin hydrochloride molecules perpendicular to the c-axis. As expected, each of the hydrogens on the protonated nitrogen atoms makes a strong hydrogen bond to one of the chloride anions. The result is to link the cations and anions into columns along the b-axis. One hydrogen atom of each sulfonamide group also makes a hydrogen bond to a chloride anion. The other hydrogen atom of each sulfonamide group forms bifurcated hydrogen bonds to two ether oxygen atoms. The powder pattern is included in the Powder Diffraction File™ as entry 00-065-1415.


2015 ◽  
Vol 30 (3) ◽  
pp. 192-198
Author(s):  
James A. Kaduk ◽  
Kai Zhong ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of ziprasidone hydrochloride monohydrate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Ziprasidone hydrochloride monohydrate crystallizes in space group P-1 (#2) with a = 7.250 10(3), b = 10.986 66(8), c = 14.071 87(14) Å, α = 83.4310(4), β = 80.5931(6), γ = 87.1437(6)°, V = 1098.00(1) Å3, and Z = 2. The ziprasidone conformation in the solid state is very close to the minimum energy conformation. The positively-charged nitrogen in the ziprasidone makes a strong hydrogen bond with the chloride anion. The water molecule makes two weaker bonds to the chloride, and acts as an acceptor in an N–H⋯O hydrogen bond. The powder pattern is included in the Powder Diffraction File™ as entry 00-064-1492.


2021 ◽  
pp. 1-9
Author(s):  
James A. Kaduk ◽  
Nicholas C. Boaz ◽  
Emma L. Markun ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of osimertinib mesylate Form B has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Osimertinib mesylate Form B crystallizes in space group P-1 (#2) with a = 11.42912(17), b = 11.72274(24), c = 13.32213(22) Å, α = 69.0265(5), β = 74.5914(4), γ = 66.4007(4)°, V = 1511.557(12) Å3, and Z = 2. The crystal structure is characterized by alternating layers of cation–anion and parallel stacking interactions parallel to the ab-planes. The cation is protonated at the nitrogen atom of the dimethylamino group, which forms a strong hydrogen bond between the cation and the anion. That hydrogen atom also participates in a weaker intramolecular hydrogen bond to an amino nitrogen. There are two additional N–H⋅⋅⋅O hydrogen bonds between the cation and the anion. Several C–H⋅⋅⋅O hydrogen bonds also link the cations and anions. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™.


2018 ◽  
Vol 33 (1) ◽  
pp. 44-48
Author(s):  
Austin M. Wheatley ◽  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of methylprednisolone acetate form II, C24H32O6, has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Methylprednisolone acetate crystallizes in space group P212121 (#19) with a = 8.17608(2), b = 9.67944(3), c = 26.35176(6) Å, V = 2085.474(6) Å3, and Z = 4. Both hydroxyl groups act as hydrogen bond donors, resulting in a two-dimensional hydrogen bond network in the ab plane. C–H⋯O hydrogen bonds also contribute to the crystal energy. The powder pattern is included in the Powder Diffraction File™ as entry 00-065-1412.


2018 ◽  
Vol 33 (4) ◽  
pp. 319-326
Author(s):  
Austin M. Wheatley ◽  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of vardenafil hydrochloride trihydrate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Vardenafil hydrochloride trihydrate crystallizes in space group C2/c (#15) with a = 34.78347(16), b = 11.56752(4), c = 14.69308(5) Å, β = 93.3410(4), V = 5901.839(30) Å3, and Z = 8. The fused ring system and the phenyl ring are nearly co-planar; the interplanar angle between them is 6.0°. Two intramolecular hydrogen bonds help determine this conformation. These planes stack along the c-axis. The side chains of these ring systems have a large Uiso and are neighbors in the stacks. Along the a-axis, these stacks are separated by hydrophilic layers of chloride, water molecules, and the positively charged nitrogen atoms of the vardenafil cation. Hydrogen bonds are prominent in the crystal structure. The protonated nitrogen atom forms a strong hydrogen bond to the chloride anion. The water molecules form a hexagon, making hydrogen bonds with themselves, as well as the C1 and a ring nitrogen atom. These discrete hydrogen bonds form a cluster, and there is no extended hydrogen bond network. There are many C–H⋯Cl, C–H⋯O, and C–H⋯N hydrogen bonds, which (although individually weak) contribute significantly to the crystal energy. The powder pattern is included in the Powder Diffraction File™ as entry 00-066-1620.


2016 ◽  
Vol 31 (2) ◽  
pp. 142-148
Author(s):  
James A. Kaduk ◽  
Kai Zhong ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of choline fenofibrate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Choline fenofibrate crystallizes in space group Pbca (#61) with a = 12.341 03(2), b = 28.568 70(6), c = 12.025 62(2) Å, V = 4239.84(1) Å3, and Z = 8. The hydroxyl group of the choline anion makes a strong hydrogen bond to the ionized carboxylate group of the fenofibrate anion. Together with C–H···O hydrogen bonds, these link the cations and anions into layers parallel to the ac-plane. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™.


2020 ◽  
Vol 35 (4) ◽  
pp. 286-292
Author(s):  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of hyoscyamine sulfate monohydrate has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Hyoscyamine sulfate monohydrate crystallizes in space group P21 (#4) with a = 6.60196(2), b = 12.95496(3), c = 20.93090(8) Å, β = 94.8839(2)°, V = 1783.680(5) Å3, and Z = 2. Despite the traditional description as a dihydrate, hyoscyamine sulfate crystallizes as a monohydrate. The two independent hyoscyamine cations have different conformations, which have similar energies. One of the cations is close to the minimum-energy conformation. Each of the protonated nitrogen atoms in the cations acts as a donor to the sulfate anion. The hydroxyl group of one cation acts as a donor to the sulfate anion, while the hydroxyl group of the other cation acts as a donor to the water molecule. The water molecule acts as a donor to two different sulfate anions. The cations and anions are linked by complex chains of hydrogen bonds along the a-axis. The powder pattern has been submitted for inclusion in the Powder Diffraction File™ (PDF®).


2018 ◽  
Vol 34 (1) ◽  
pp. 66-73
Author(s):  
Jordan A. Krueger ◽  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of hydroxyzine dihydrochloride has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Hydroxyzine dihydrochloride crystallizes in space group P21 (#4) with a = 11.48735(10), b = 7.41792(7), c = 14.99234(15) Å, β = 110.4383(10)°, V = 1197.107(13) Å3, and Z = 2. The hydroxyl-containing side chain of the cation is disordered over two conformations, with ~70/30% occupancy. The crystal structure consists of alternating polar (which includes the cation-anion interactions and hydrogen bonds) and nonpolar layers parallel to the ab-plane. The crystal structure is dominated by hydrogen bonds. Each of the protonated nitrogen atoms forms a very strong hydrogen bond to one of the chloride anions. The hydroxyl group forms a strong hydrogen bond to one of the chloride anions in both conformations, and there are subtle differences in the hydrogen bonding patterns between the conformations. The powder pattern is included in the Powder Diffraction File™ as entry 00-066-1603.


2020 ◽  
Vol 35 (1) ◽  
pp. 61-66
Author(s):  
Shivang Bhaskar ◽  
Joseph T. Golab ◽  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of ipratropium bromide monohydrate has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Ipratropium bromide monohydrate crystallizes in the space group P21/c (#14) with a = 8.21420(7) Å, b = 10.54617(13) Å, c = 24.0761(39) Å, β = 99.9063(7) °, V = 2054.574(22) Å3, and Z = 4. Both hydrogen atoms of the water molecule act as donors to the bromide cation, forming a ring with the graph set R2,4(8). The hydroxyl group also acts as a donor to Br. Several C–H⋯Br hydrogen bonds are present. The water molecule acts as an acceptor in two C–H⋯O hydrogen bonds from methyl groups. The ketone acts as an acceptor in C–H⋯O hydrogen bonds from methyl groups, a methylene group, and a methyne group. The hydroxyl group acts as an acceptor in a C–H⋯O hydrogen bond from a phenyl carbon atom. The powder pattern is included in the Powder Diffraction File™ as entry 00-066-1611.


Sign in / Sign up

Export Citation Format

Share Document