Broadleaf Weed Control in Soybean (Glycine max) with Chlorimuron plus Acifluorfen or Thifensulfuron Mixtures

1993 ◽  
Vol 7 (2) ◽  
pp. 317-321 ◽  
Author(s):  
C. Dale Monks ◽  
John W. Wilcut ◽  
John S. Richburg

Chlorimuron applied alone and in combination with acifluorfen or thifensulfuron was evaluated for POST control of common lambsquarters, common ragweed, common cocklebur, and a mixture of pitted, ivyleaf, entireleaf, and tall morningglory in soybean. Common cocklebur control was similar with thifensulfuron at 3 and 4 g ae ha−1and with chlorimuron at 7 and 9 g ae ha−1, Common ragweed and morningglory control was greater with chlorimuron while common lambsquarters control was greater with thifensulfuron. Control of all species was good with combinations of chlorimuron at 7 g ha−1plus thifensulfuron at 2 g ha−1or acifluorfen at 140 g ae ha−1and similar to or greater than the control with chlorimuron at 9 g ha−1. Soybean yields with all POST herbicide treatments were equivalent to that of the weed-free check.

1998 ◽  
Vol 12 (1) ◽  
pp. 137-144 ◽  
Author(s):  
Kelly A. Nelson ◽  
Karen A. Renner

Field experiments were conducted at East Lansing and Clarksville, MI, to evaluate the efficacy of imazamox, imazethapyr, and CGA-277476 plus quizalofop applied postemergence in wide- (76-cm) and narrow- (19-cm) row soybean. Soybean injury from all herbicides was minimal 14 days after treatment (DAT), except for CGA-277476 at 79 g ai/ha plus 69 g ai/ha quizalofop, which caused 30% soybean injury at the Clarksville location. Adding 4 g ai/ha CGA-248757 to 65 g ai/ha CGA-277476 plus quizalofop reduced common ragweed control, but increased redroot pigweed control in wide rows compared to 79 g ai/ha CGA-277476 plus quizalofop. Imazamox at 35 and 45 g ai/ha provided greater common ragweed and common lambsquarters control than imazethapyr at 70 g ai/ha 28 DAT. All herbicide treatments controlled velvetleaf. Common ragweed and common lambsquarters control by all herbicide treatments was enhanced in narrow- compared to wide-row soybean 56 DAT as was redroot pigweed control by CGA-277476 treatments. Total weed biomass and soybean yield in wide-row soybean treated with imazamox at 45 g/ha was not different from the hand-weeded control. In narrow-row soybean, soybean yield was equal to the hand-weeded control for 35 and 45 g/ha imazamox and 70 g/ha imazethapyr. Postemergence herbicide treatments resulted in less weed biomass and greater soybean yield in narrow- compared to wide-row soybean.


1989 ◽  
Vol 3 (4) ◽  
pp. 621-626 ◽  
Author(s):  
David L. Regehr ◽  
Keith A. Janssen

Research in Kansas from 1983 to 1986 evaluated early preplant (30 to 45 days) and late preplant (10 to 14 days) herbicide treatments for weed control before ridge-till planting in a soybean and sorghum rotation. Control of fall panicum and common lambsquarters at planting time averaged at least 95% for all early preplant and 92% for late preplant treatments. Where no preplant treatment was used, heavy weed growth in spring delayed soil dry-down, which resulted in poor ridge-till planting conditions and reduced plant stands, and ultimately reduced sorghum grain yields by 24% and soybean yields by 12%. Horsenettle population declined significantly, and honeyvine milkweed population increased. Smooth groundcherry populations fluctuated from year to year with no overall change.


Weed Science ◽  
1989 ◽  
Vol 37 (3) ◽  
pp. 392-399 ◽  
Author(s):  
Douglas D. Buhler ◽  
Virginia L. Werling

In 1985, when weed densities were low (169 plants/m2in untreated control), imazaquin applied at 0.07 kg ai/ha early preplant controlled over 90% of all weeds before no-till planting of soybeans. In 1986 and 1987 when weed densities were higher (589 plants/m2in untreated control), addition of 1.1 kg ai/ha or more of metolachlor to imazaquin (0.07 kg/ha) before soybean planting controlled 95% or more of the grass weeds and 83% or more of the broadleaf weeds. Imazaquin plus metolachlor applied less than 1 day after soybean planting controlled less than 70% of the emerged weeds in 1986 and 1987; common lambsquarters was most tolerant. Early preplant treatments controlled more weeds throughout the growing season than treatments applied after planting. Splitting herbicide treatments among application times generally did not increase weed control compared to single applications. Early preplant applications resulted in higher soybean densities and taller soybeans 30 days after planting in 1986 and 1987 than treatments applied after planting. Soybean yields increased as weed control increased. Weed control and soybean yields were greater with early preplant treatments than paraquat plus alachlor plus metribuzin applied preemergence in 1986 and 1987. No carryover of imazaquin residue was detected through corn bioassay in the field.


2014 ◽  
Vol 94 (7) ◽  
pp. 1239-1244 ◽  
Author(s):  
Kimberly D. Walsh ◽  
Nader Soltani ◽  
Lynette R. Brown ◽  
Peter H. Sikkema

Walsh, K. D., Soltani, N., Brown, L. R. and Sikkema, P. H. 2014. Weed control with postemergence glyphosate tank mixes in glyphosate-resistant soybean. Can. J. Plant Sci. 94: 1239–1244. Six field trials were conducted over a 3-yr period (2011, 2012 and 2013) in Ontario, Canada, to evaluate various postemergence (POST) glyphosate tank mixes for weed management in glyphosate-resistant (GR) soybean. Herbicide treatments included glyphosate applied alone or mixed with acifluorfen, fomesafen, bentazon and thifensulfuron-methyl. Glyphosate tank mixtures with acifluorfen, fomesafen, bentazon and thifensulfuron-methyl caused GR soybean injury of up to 21, 11, 4 and 14% at 7 d after treatment (DAT), which was reduced to 5, 0, 0 and 2% by 28 DAT, respectively. Velvetleaf, green pigweed, common ragweed and common lambsquarters control ranged from 55 to 95, 93 to 100, 70 to 92 and 81 to 98% at 28 DAT respectively. Relative to glyphosate alone, tank mixtures with thifensulfuron-methyl provided equivalent to increased weed control, while acifluorfen, fomesafen and bentazon provided equivalent to reduced weed control. All herbicide tank mixtures resulted in higher yields (3.8–4.0 t ha−1) than the untreated check (2.7 t ha−1), and were generally equivalent to glyphosate alone (4.1 t ha−1). Results from this study indicate that the glyphosate tank mixtures evaluated did not provide a benefit over glyphosate alone.


2009 ◽  
Vol 23 (2) ◽  
pp. 193-196 ◽  
Author(s):  
Cory M. Whaley ◽  
Gregory R. Armel ◽  
Henry P. Wilson ◽  
Thomas E. Hines

Field experiments were conducted in 2001, 2002, and 2003 to evaluate PRE applications of mesotrione at 150, 230, and 310 g ai/ha alone, and in mixtures with S-metolachlor at 1,070 g ai/ha and atrazine at 560 and 1,120 g ai/ha in corn. Corn injury was 11 to 18% with all treatments in 2002 when 3.2 cm of rainfall occurred within 10 d after PRE applications, but no injury was observed in 2001 and 2003 when rainfall was 0 and 1.1 cm within 10 d after PRE applications, respectively. Rainfall following PRE herbicide applications also influenced weed control, where weed control was generally poor with all herbicide treatments in 2001. Mesotrione at 150 g/ha controlled common lambsquarters and smooth pigweed at least 95% in 2002 and 2003, but control was 70% or less in 2001. PRE mesotrione at rates of 230 or 310 g/ha controlled common ragweed at least 83% in 2002 and 2003, but control exceeded 88% with mixtures of mesotrione at rates greater than 150 g/ha plus S-metolachlor plus atrazine at 560 g/ha. Morningglory species (ivyleaf morningglory, pitted morningglory, and tall morningglory) were not consistently controlled by mesotrione alone. In 2002 and 2003, mixtures of all mesotrione rates plus S-metolachlor plus atrazine at 1,120 g/ha controlled morningglory species at least 90%. Corn treated with mesotrione at any rate plus S-metolachlor plus atrazine at 1,120 g/ha consistently produced high yields. It is concluded that control with this three-way mixture would be most consistent with a minimum rate of mesotrione at 230 g/ha and atrazine at 1,120 g/ha.


Weed Science ◽  
1998 ◽  
Vol 46 (5) ◽  
pp. 587-594 ◽  
Author(s):  
Kelly A. Nelson ◽  
Karen A. Renner ◽  
Donald Penner

Field and greenhouse experiments were conducted in 1995 and 1996 to determine soybean injury and weed control differences from imazamox and imazethapyr applied postemergence with a nonionic surfactant or methylated seed oil and with selected tank mixtures. Soybean injury from imazamox at 35 g ai ha−1plus either a methylated seed oil or nonionic surfactant was equal to injury from imazethapyr at 70 g ai ha−1in the greenhouse and field. Imazamox provided greater common lambsquarters control than imazethapyr in the field in 1995 and in the greenhouse. Thifensulfuron tank mixed with imazethapyr increased common lambsquarters control, while soybean response increased when thifensulfuron was tank mixed with imazamox. Common ragweed dry weight was reduced 61 to 64% from 35 g ha−1imazamox and 70 g ha−1imazethapyr in the field; however, imazamox provided greater common ragweed control than imazethapyr in the greenhouse. Tank mixtures of lactofen with imazamox or imazethapyr increased common ragweed control and resulted in greater soybean seed yield in 1996 than when imazamox and imazethapyr were applied alone; however, lactofen antagonized giant foxtail control with imazamox and imazethapyr, and antagonized common lambsquarters control with imazamox. Giant foxtail control in the greenhouse was antagonized more when acifluorfen, fomesafen, and lactofen were tank mixed with 35 g ha−1imazethapyr than with 35 g ha−1imazamox. Giant foxtail control with imazamox or imazethapyr applied alone or with diphenyl ether herbicides increased when 28% urea ammonium nitrate was added with nonionic surfactant compared with nonionic surfactant only. Imazethapyr antagonized giant foxtail control by clethodim in the field and was more antagonistic than imazamox in the greenhouse. A methylated seed oil improved common ragweed control by imazethapyr at 70 g ha−1and imazamox at 18 and 35 g ha−1, while common lambsquarters and velvetleaf control increased when a methylated seed oil was included with 18 g ha−1imazethapyr compared to nonionic surfactant in the greenhouse.


1999 ◽  
Vol 13 (2) ◽  
pp. 394-398 ◽  
Author(s):  
Comfort M. Ateh ◽  
Robert G. Harvey

Control of natural infestations of common lambsquarters and giant foxtail in 1993, 1994, and 1995 and of velvetleaf in 1994 and 1995 by postemergence application of glyphosate to glyphosate-resistant soybean planted in narrow (20 cm) and wide (76 cm) rows was evaluated. Planting glyphosate-resistant soybean in narrow rows and applying reduced rates of glyphosate when common lambsquarters, giant foxtail, and velvetleaf were at their actively growing stage 3 to 18 cm, 5 to 28 cm, and 3 to 20 cm tall, respectively, resulted in > 90% control. The effect of time of herbicide application was greater than the rate of herbicide application, especially within the wide-row soybean plantings. Applying imazethapyr in combination with glyphosate did not improve weed control or soybean yield compared with glyphosate alone.


2018 ◽  
Vol 32 (6) ◽  
pp. 707-713 ◽  
Author(s):  
Brendan A. Metzger ◽  
Nader Soltani ◽  
Alan J. Raeder ◽  
David C. Hooker ◽  
Darren E. Robinson ◽  
...  

AbstractTolpyralate is a new Group 27 pyrazolone herbicide that inhibits the 4-hydroxyphenyl-pyruvate dioxygenase enzyme. In a study of the biologically effective dose of tolpyralate from 2015 to 2017 in Ontario, Canada, tolpyralate exhibited efficacy on a broader range of species when co-applied with atrazine; however, there is limited published information on the efficacy of tolpyralate and tolpyralate+atrazine relative to mesotrione and topramezone, applied POST with atrazine at label rates, for control of annual grass and broadleaf weeds. In this study, tolpyralate applied alone at 30 g ai ha−1 provided >90% control of common lambsquarters, velvetleaf, common ragweed, Powell amaranth/redroot pigweed, and green foxtail at 8 weeks after application (WAA). Addition of atrazine was required to achieve >90% control of wild mustard, ladysthumb, and barnyardgrass at 8 WAA. Tolpyralate+atrazine (30+1,000 g ai ha−1) and topramezone+atrazine (12.5+500 g ai ha−1) provided similar control at 8 WAA of the eight weed species in this study; however, tolpyralate+atrazine provided >90% control of green foxtail by 1 WAA. Tolpyralate+atrazine provided 18, 68, and 67 percentage points better control of common ragweed, green foxtail, and barnyardgrass, respectively, than mesotrione+atrazine (100+280 g ai ha−1) at 8 WAA. Overall, tolpyralate+atrazine applied POST provided equivalent or improved control of annual grass and broadleaf weeds compared with mesotrione+atrazine and topramezone+atrazine.


Weed Science ◽  
1998 ◽  
Vol 46 (1) ◽  
pp. 105-110 ◽  
Author(s):  
William G. Johnson ◽  
Jeffrey S. Dilbeck ◽  
Michael S. DeFelice ◽  
J. Andrew Kendig

Field studies were conducted at three locations in 1993 and 1994 to evaluate weed control and crop response to metolachlor plus combinations of 0.5 × and 1 × label rates of imazaquin applied preplant and imazethapyr applied early postemergence or postemergence in no-till narrow-row soybean production. Giant foxtail, common ragweed, common cocklebur, and large crabgrass population reductions were greater with sequential preplant metolachlor plus imazaquin followed by early postemergence or postemergence imazethapyr than with preplant metolachlor plus imazaquin or early postemergence/postemergence imazethapyr alone. Ivyleaf morningglory was not effectively controlled by any herbicide program. Pennsylvania smartweed populations were reduced with all herbicide treatments. Soybean yields with treatments utilizing 0.5 × rates were usually equal to 1 × rates if imazethapyr was applied early postemergence or postemergence. Net income with reduced herbicide rates was equal to full-label rates and provided no greater risk to net income.


2004 ◽  
Vol 18 (2) ◽  
pp. 268-276 ◽  
Author(s):  
Ian C. Burke ◽  
John W. Wilcut

An experiment was conducted at five locations in North Carolina during 2000 and 2001 to evaluate weed control, crop injury, and cotton yield. Weed management systems included different combinations of pyrithiobac preemergence (PRE), fluometuron PRE, CGA-362622 postemergence (POST), pyrithiobac POST, and monosodium salt of methylarsonic acid (MSMA) plus prometryn applied late POST-directed (LAYBY). At Goldsboro in 2000, cotton was injured 74 to 78% by CGA-362622 POST when evaluated 4 to 7 d after treatment (DAT). Injury at Clayton, Goldsboro, and Lewiston in 2001 and Rocky Mount in 2000 was less than 16% 4 to 7 DAT with the same treatment and was not apparent by 62 DAT. CGA-362622 controlled common lambsquarters, common ragweed, Palmer amaranth, sicklepod, smooth pigweed, andIpomoeaspecies including entireleaf, ivyleaf, and pitted morningglory, and the addition of pyrithiobac to the herbicide system, either PRE or POST, increased control ofAmaranthusspecies, jimsonweed, and prickly sida. CGA-362622 did not control jimsonweed or prickly sida. Fluometuron PRE, pyrithiobac PRE, and MSMA plus prometryn LAYBY were beneficial for increasing weed control and cotton lint yields. Prometryn plus MSMA LAYBY increased control of common ragweed, entireleaf morningglory, jimsonweed, pitted morningglory, and smooth pigweed and provided higher cotton yields than similar systems without a LAYBY. The greatest weed control and greatest cotton lint yields required complete weed management systems that included a combination of PRE, POST, and LAYBY treatments.


Sign in / Sign up

Export Citation Format

Share Document