Response of Peanut (Arachis hypogaea) and Selected Weeds to Diclosulam

1999 ◽  
Vol 13 (4) ◽  
pp. 771-776 ◽  
Author(s):  
William A. Bailey ◽  
John W. Wilcut ◽  
David L. Jordan ◽  
Charles W. Swann ◽  
Vernon B. Langston

Field studies were conducted at five locations in North Carolina and Virginia during 1996 and 1997 to evaluate weed control, peanut (Arachis hypogaea) response, and peanut yield following diclosulam applied preplant incorporated (PPI) and in systems with commercial herbicide standards. All plots received a PPI treatment of ethalfluralin at 840 g ai/ha. Ethalfluralin plus diclosulam controlled entireleaf morningglory (Ipomoea hederaceavar.integriuscula), ivyleaf morningglory (I. hederacea), pitted morningglory (I. lacunosa), common lambsquarters (Chenopodium album), eclipta (Eclipta prostrata), and prickly sida (Sida spinosa) as well as and frequently better than ethalfluralin PPI followed by (fb) acifluorfen plus bentazon postemergence (POST), paraquat plus bentazon early postemergence (EPOST) fb imazapic POST, or imazapic POST. Systems with ethalfluralin plus diclosulam PPI at 26 g ai/ha fb acifluorfen plus bentazon POST controlled a broader spectrum of weeds and yielded greater than systems of ethalfluralin PPI fb imazapic POST or ethalfluralin PPI fb acifluorfen plus bentazon POST. Peanut exhibited excellent tolerance to diclosulam PPI at 17, 26, or 35 g/ha.

1999 ◽  
Vol 13 (3) ◽  
pp. 450-456 ◽  
Author(s):  
William A. Bailey ◽  
John W. Wilcut ◽  
David L. Jordan ◽  
Charles W. Swann ◽  
Vernon B. Langston

Field studies were conducted at five locations in North Carolina and Virginia in 1996 and 1997 to evaluate weed control and peanut (Arachis hypogaea) response to diclosulam that was applied preemergence (PRE) and in systems with commercial standards. All plots received a preplant incorporated (PPI) treatment of ethalfluralin at 840 g ai/ha. Diclosulam controlled common lambsquarters (Chenopodium albumL.), eclipta (Eclipta prostrataL.), entireleaf morningglory (Ipomoea hederaceavar.integriusculaGray), ivyleaf morningglory [Ipomoea hederacea(L.) Jacq.], pitted morningglory (Ipomoea lacunosaL.), and prickly sida (Sida spinosaL.) as well as and frequently better than the commercial standards of acifluorfen plus bentazon applied postemergence (POST), paraquat plus bentazon early POST followed by (fb) imazapic POST, or imazapic POST. Systems with ethalfluralin PPI plus diclosulam PRE at 26 g ai/ha fb acifluorfen plus bentazon POST controlled a broader spectrum of weeds and yielded greater than systems of ethalfluralin PPI fb imazapic POST or ethalfluralin PPI fb acifluorfen plus bentazon POST. Peanut exhibited excellent tolerance to diclosulam PRE at 17, 26, or 35 g/ha.


1999 ◽  
Vol 13 (3) ◽  
pp. 594-598 ◽  
Author(s):  
Shawn D. Askew ◽  
John W. Wilcut ◽  
John R. Cranmer

Flumioxazin plus metolachlor mixtures preemergence (PRE) were evaluated with or without postemergence (POST) herbicides for weed control and peanut (Arachis hypogaea) response in three North Carolina studies. Metolachlor PRE at 2.24 kg ai/ha controlled goosegrass (Eleusine indica) and yellow nutsedge (Cyperus esculentus) 93 and 80%, respectively, and control was not improved with flumioxazin or norflurazon. Metolachlor plus flumioxazin PRE at 0.07 or 0.11 kg ai/ha controlled common lambsquarters (Chenopodium album); entireleaf (Ipomoea hederaceavar.integriuscula), ivyleaf (I. hederacea), and pitted morningglory (I. lacunosa); and prickly sida (Sida spinosa) better than metolachlor plus norflurazon PRE at 1.34 kg ai/ha. Morningglories (Ipomoeaspp.) were controlled 77 and 86% with flumioxazin PRE at 0.07 and 0.11 kg/ha, respectively, and control was increased to nearly 100% with acifluorfen plus 2,4-DB or lactofen plus 2,4-DB POST. Peanut injury by flumioxazin and norflurazon was observed at one location in 1997; however, yields were not reduced. Peanut treated with metolachlor plus flumioxazin PRE at either rate yielded at least 3,750 kg/ha compared to 3,120 kg/ha with metolachlor plus norflurazon PRE or 1,320 kg/ha with metolachlor PRE.


Weed Science ◽  
1996 ◽  
Vol 44 (3) ◽  
pp. 615-621 ◽  
Author(s):  
John W. Wilcut ◽  
John S. Richburg ◽  
Gerald L. Wiley ◽  
F. Robert Walls

Field studies in 1990 and 1991 at six locations in Georgia and one location in North Carolina evaluated AC 263,222 for weed control, peanut tolerance, and yield. AC 263,222 applied early postemergence at 71 g ai ha−1controlled bristly starbur, coffee senna, common lambsquarters,Ipomoeaspecies, prickly sida, sicklepod, smallflower morningglory, and yellow nutsedge at least 91%. AC 263,222 controlled common cocklebur 77% and Florida beggarweed from 47 to 100%. Crop injury was 4% for AC 263,222 applied once and 12% or less from two applications. Mixtures of bentazon with AC 263,222 did not improve control compared to AC 263,222 alone. Imazethapyr did not improve control of AC 263,222 systems. In several locations, bentazon reduced control of Florida beggarweed with AC 263,222 when applied in a mixture compared to AC 263,222 alone. Weed control from the standard of paraquat plus bentazon applied early postemergence followed by paraquat, bentazon plus 2,4-DB applied POST did not provide the level or spectrum of weed control as AC 263,222 systems.


Weed Science ◽  
1999 ◽  
Vol 47 (5) ◽  
pp. 596-601 ◽  
Author(s):  
Mary D. Paulsgrove ◽  
John W. Wilcut

An experiment was conducted at two locations in Georgia and two locations in North Carolina during 1994 and 1995 to evaluate weed management in conventional-tillage bromoxynil-resistantGossypium hirsutumL. (cotton). The weed management systems evaluated included different combinations of fluometuron preemergence (PRE), bromoxynil or bromoxynil plus MSMA early postemergence (EPOST), bromoxynil postemergence (POST), and cyanazine plus MSMA late post-directed (LAYBY). Fluometuron PRE improved control ofAcanthospermum hisptdiumDC. (bristly starbur),Cassia occidentalisL. (coffee senna),Chenopodium albumL. (common lambsquarters),Desmodium tortuosum(Sw.) DC. (Florida beggarweed),Sida spinosaL. (prickly sida),Jacquemontia tamnifolia(L.) Griseb. (smallflower morningglory), andAnoda cristata(L.) Schlecht. (spurred anoda), compared to system that did not use fluometuron PRE. It also improvedG. hirsutumyields at three four locations. Bromoxynil-containing systems provided better weed control and higherG. hirsutumyields than systems without bromoxynil. Bromoxynil EPOST controlledA. hispidium, C. occidentalis, C. album, D. tortuosum, S. spinosa, J. tamnifolia, andA. cristata.Control of these species was frequently improved by a second application of bromoxynil POST. Bromoxynil EPOST, POST, or EPOST plus POST did not controlSenna obtusifolia(L.) Irwin and Barneby (sicklepod), but the addition of MSMA to bromoxynil EPOST improvedS. obtusifoliacontrol. Control of all dicotyledonous weeds was improved by a LAYBY treatment of cyanazine plus MSMA, and yields were improved at three of four locations with this treatment.Gossypium hirsutumwas not injured by POST treatments of bromoxynil, and only temporary injury resulted from POST treatments of MSMA.


1993 ◽  
Vol 20 (2) ◽  
pp. 129-131 ◽  
Author(s):  
David L. Jordan ◽  
John W. Wilcut ◽  
Charles W. Swann

Abstract Field experiments compared single and sequential applications of lactofen {+-2-ethoxy-1-methyl-2-oxoethyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoate} to the standard herbicide programs of alachlor [2-chloro-N-2,6-diethylphenyl)-N-(methoxymethyl)-acetamide] + paraquat (1,11-dimethyl-4,41-bipyridinium ion) and acifluorfen {5-[2-chloro-4-(trifluromethyl)phenoxy]-2-nitrobenzoic acid} + bentazon {3-(1-methyl-ethyl)-1H-2,1,3-benzothiadiazon-4(3H) 2,2-dioxide} for broadleaf weed control. A single late postemergence (LPOST) application of lactofen controlled morningglory species (Ipomoea spp.) and prickly sida (Sida spinosa L.) as well as lactofen applied early POST (EPOST) and LPOST. Lactofen applied sequentially at groundcracking (GC) and EPOST provided greater and/or more consistent control of common lambsquarters (Chenopodium album L.) and prickly sida than alachlor+paraquat applied GC or acifluorfen+bentazon applied LPOST. Ipomoea spp. control was less with a single LPOST application of lactofen than with acifluorfen+bentazon applied LPOST in 1988. Eclipta (Eclipta prostrata L.) was controlled with single or sequential lactofen applications and with acifluorfen+bentazon applied LPOST. Peanut yield was greater when lactofen was applied at GC followed by an EPOST application compared with a single application of lactofen applied LPOST, acifluorfen+ bentazon applied LPOST, or alachlor+paraquat applied GC.


1991 ◽  
Vol 18 (1) ◽  
pp. 26-30 ◽  
Author(s):  
John W. Wilcut ◽  
F. Robert Walls ◽  
David N. Horton

Abstract Field experiments were conducted at the Tidewater Agric. Exp. Station, Suffolk, VA in 1988 and 1989 to evaluate imazethapyr [(±)-2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-5-ethyl-3-pyridine-carboxylic acid]for broadleaf weed control in peanuts (Arachis hypogaea L.). Imazethapyr was applied preplant-incorporated (PPI), preemergence (PRE), at ground-cracking (GC), and postemergence (POT) at rates of 0.036, 0.071, or 0.105 kg ai ha-1. Several sequential imazathapyr systems were also included. The standard of pendimethalin (N-ethylpropyl)-3, 4-dimethyl-2,6-dinitrobenzenamine) PPI, metolachlor(2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide) PRE, and acifluorfen (5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid) plus bentazon (3-(1-methyethyl)-(1H)-2,1,3-benzothiadiazin-4(3H)-one 2, 2-dioxide) POT was included for comparative purposes. Imazethapyr applied either PPI or PRE at 0.071 or 0.105 kg ha-1 provided <90% spurred anoda (Anoda cristata (L.) Schlecht.), control and <96% prickly sida (Sida spinosa L.), control. Eclipta (Eclipta prostrata L.) control was 95% when imazathapyr was applied PRE at 0.105 kg ha-1. Greater than 90% annual morningglory (Ipomoea spp.) control was only achieved with imazethapyr applied PPI or PRE at 0.105 kg ha-1. The standard provided complete control of eclipta, and 51%, 92%, and 94% control of spurred anoda (Anoda cristata (L.) Schlecht.), prickly sida (Sida spinosa L.), and annual morningglories, respectively. Several imazethapyr systems yielded equivalent to the standard. Averaged across all rates, imazathapyr applied PPI yielded 4110 kg ha-1, PRE = 3860 kg ha-1, GC = 3680 kg ha-1, and POT = 3370 kg ha-1. Several imazethapyr systems provided net returns equivalent to the standard. Corn grown the following year was not injured by any imazethapyr treatment to peanuts the previous year.


1999 ◽  
Vol 13 (2) ◽  
pp. 324-333 ◽  
Author(s):  
A. Stanley Culpepper ◽  
Alan C. York

An experiment was conducted at five locations in North Carolina to compare management systems utilizing glufosinate applied postemergence (POST) in glufosinate-resistant corn with standard systems of metolachlor plus atrazine preemergence (PRE) or nicosulfuron plus atrazine POST Glufosinate alone and both standard systems controlled common ragweed and prickly sida at least 98%, whereas sicklepod control was < 20% late in the season. Late-season control of common lambsquarters, smooth pigweed, pitted morningglory, and tall morningglory was generally less with glufosinate alone than with the standard systems. However, late-season control of common lambsquarters, smooth pigweed, pitted morningglory, tall morningglory, and sicklepod by mixtures of glufosinate plus atrazine was at least 99, 100, 89, 93, and 81%, respectively, and was equal to or greater than control by either standard. Broadleaf signalgrass, large crabgrass, and fall panicum were controlled similarly by glufosinate and the standards. Goosegrass control by glufosinate was similar to control by nicosulfuron plus atrazine, but it was less than control by metolachlor plus atrazine. Metolachlor applied PRE or atrazine mixed with glufosinate increased goosegrass control to that achieved with metolachlor plus atrazine. Mixing atrazine with glufosinate did not affect fall panicum control, but metolachlor PRE followed by glufosinate controlled fall panicum as well as the standards. Cultivation or ametryn applied at layby increased control when PRE or POST herbicides alone controlled weeds less than about 90%. Ametryn was generally more effective than cultivation. Glufosinate POST followed by ametryn at layby controlled sicklepod > 90% and other species > 95% late in the season. Corn yield and net returns were similar in the glufosinate and standard systems.


Weed Science ◽  
1995 ◽  
Vol 43 (1) ◽  
pp. 107-116 ◽  
Author(s):  
Alan C. York ◽  
John W. Wilcut ◽  
Charles W. Swann ◽  
David L. Jordan ◽  
F. Robert Walls

Experiments conducted in North Carolina and Virginia compared weed control, peanut yield, and net returns with systems using imazethapyr applied at various times and the regional standard treatment of paraquat applied at the ground-cracking stage of peanut (GC) followed by acifluorfen plus bentazon applied POST. Imazethapyr was applied PPI, PRE, GC, or POST at 70 g ae ha−1. Imazethapyr also was applied sequentially PPI plus GC, PPI plus POST, and PRE plus POST at 35 + 35 and 70 + 70 g ha−1. Late-season control of common ragweed and a mixture of entireleaf, ivyleaf, and pitted morningglories by the standard treatment ranged from 85 to 100%. Spurred anoda was controlled 80%, and common lambsquarters and prickly sida were controlled completely. Control of common lambsquarters, prickly sida, and morningglory by imazethapyr applied one or more times was similar to control by the standard. Control by imazethapyr exceeded that by the standard only for spurred anoda. The most effective time for applying imazethapyr varied by species and locations. Imazethapyr was equally effective on common lambsquarters and spurred anoda when applied PPI, PRE, or GC. Prickly sida and morningglory were controlled best when imazethapyr was applied PPI or PRE and GC, respectively. Common ragweed was controlled poorly with single applications of imazethapyr. Applying imazethapyr sequentially improved consistency of control across the range of species. In most cases, imazethapyr applied sequentially at 35 + 35 g ha−1controlled all weeds as well as or better than when applied once at 70 g ha−1. Overall, imazethapyr at the registered rate of 70 g ha−1was most effective when applied PPI at 35 g ha−1followed by 35 g ha−1at GC. Except for common ragweed, weed control with this treatment was similar to that by the standard. Peanut yield and net returns with this treatment were similar to those with the standard at three of four locations.


2001 ◽  
Vol 28 (1) ◽  
pp. 13-19 ◽  
Author(s):  
T. L. Grey ◽  
D. C. Bridges ◽  
E. F. Eastin

Abstract Field studies were conducted from 1996 to 1998 in Georgia to determine peanut (Arachis hypogaea L.) and weed response to ethalfluralin (0.8 kg ai/ha) plus diclosulam applied preplant incorporated (PPI) at 9, 18, 26, 35 and 52 g ai/ha. Other treatments included ethalfluralin PPI followed by paraquat plus bentazon (140 and 280 g ai/ha, respectively) early postemergence (EPOST) applied alone or following ethalfluralin plus diclosulam (18 and 26 g ai/ha) PPI, ethalfluralin PPI followed by imazapic (71 g ai/ha) postemergence (POST), and ethalfluralin PPI. Ethalfluralin was applied PPI in all herbicide programs. Diclosulam controlled Florida beggarweed [Desmodium tortuosum (Sweet) D.C.], sicklepod [Senna obtusifolia (L.) Irwin and Barneby], and yellow nutsedge (Cyperus esculentus L.) inconsistently, and POST application of paraquat plus bentazon was needed for acceptable control. However, diclosulam controlled common ragweed (Ambrosia artemisiifolia L.), tropic croton (Croton glandulosus Muell-Arg.), wild poinsettia (Euphorbia heterophylla L.), and prickly sida (Sida spinosa L.) without the need for POST herbicides. Higher yields were recorded with diclosulam PPI followed by a sequential application of paraquat plus bentazon than herbicide programs not containing diclosulam or diclosulam alone. Diclosulam PPI followed by sequential applications of paraquat plus bentazon provided greater control of sicklepod and prickly sida that resulted in greater yields. Yields from dicosulam PPI followed by paraquat plus bentazon EPOST were equivalent to yields with paraquat plus bentazon EPOST followed by imazapic POST or imazapic EPOST.


1995 ◽  
Vol 9 (4) ◽  
pp. 807-812 ◽  
Author(s):  
John S. Richburg ◽  
John W. Wilcut ◽  
E. Ford Eastin

Field studies at three sites in Georgia evaluated broadleaf weed and nutsedge management in peanut with PPI applications of imazethapyr and metolachlor and POST applications of paraquat in mixture with imazethapyr or bentazon. Imazethapyr at 36 g ai/ha applied PPI alone or in mixture with metolachlor at 2750 g ai/ha controlled coffee senna; entireleaf, ivyleaf, pitted, smallflower, and tall morningglories; bristly starbur; and prickly sida better than metolachlor applied PPI. Yellow nutsedge control was generally higher where metolachlor was applied PPI. Postemergence control of the aforementioned species and sicklepod was similar with paraquat plus imazethapyr and paraquat plus bentazon. Peanut yields with paraquat plus imazethapyr and paraquat plus bentazon were similar. With one exception, peanut yields from imazethapyr PPI systems were higher than metolachlor PPI systems when POST herbicides were not used. Inclusion of metolachlor with PPI application of imazethapyr increased yields only at one location.


Sign in / Sign up

Export Citation Format

Share Document