Tolerance of Four Seashore Paspalum (Paspalum vaginatum) Cultivars to Postemergence Herbicides

1997 ◽  
Vol 11 (4) ◽  
pp. 689-692 ◽  
Author(s):  
B. Jack Johnson ◽  
Ronny R. Duncan

A field study was conducted on tolerance of four seashore paspalum cultivars to postemergence (POST) herbicides in Georgia during 1995 and 1996. Quinclorac (0.8 kg/ha) and MON 12000 (0.07 kg/ha) at recommended rates were the only POST herbicides that did not affect the performance of any seashore paspalum cultivar (≥ 89%). When the rates were increased to three times recommended, the quality of ‘AP 10’ (≥ 96%) and ‘PI 28960’ (93%) cultivars was not affected, but the quality of ‘HI 25’ (≥ 84%) and ‘K-7’ (77%) was lower when compared with respective untreated plots. HI 25 recovered within 4 wk, but K-7 required 6 wk or longer. Dicamba at 1.7 kg/ha affected the quality of K-7 (69%) more at 2 wk than the other cultivars (85 to 92%). Diclofop, imazaquin, and 2,4-D plus mecoprop plus dicamba significantly reduced the quality of all cultivars 2 wk after treatment (WAT). The quality of all cultivars was similar at 2 WAT with diclofop at 1.1 kg/ha (79 to 84%). However, when treated with imazaquin at 0.4 kg/ha, the quality of K-7 (65%) was lower than AP 10 (85%), HI 25 (77%), and PI 28960 (81%), and when treated with 2,4-D plus mecoprop plus dicamba at 1.1 + 0.6 + 0.1 kg/ha, the quality of AP 10 (75%), PI 28960 (72%), and K-7 (57%) was lower than HI 25 (87%). POST applications of quinclorac, dicamba, and MON 12000 were safe to use for weed control in paspalum cultivars, whereas the safety of diclofop and imazaquin was marginal, and 2,4-D plus mecoprop plus dicamba was unacceptable.

1998 ◽  
Vol 16 (2) ◽  
pp. 76-78
Author(s):  
B. Jack Johnson ◽  
Ronny R. Duncan

Abstract The efficacy of preemergence herbicides among seashore paspalum (Paspalum vaginatum Swartz) cultivars used for summer annual weed control is limited. No differences were found in turfgrass tolerance among four paspalum cultivars from preemergence herbicides during 1996 and 1997 at Griffin, GA. The tolerance of paspalum turfgrass was good when treated with Ronstar (oxadiazon) at rates ≤ 10.1 kg/ha (9.0 lb/A), pendimethalin (various trade names, water-dispersible granules) or Barricade (prodiamine) at recommended rates [3.4 kg/ha (3.0 lb/A) and 0.8 kg/ha (0.7 lb/A), respectively]. When rates of these herbicides were increased to three times recommended, 15% injury was noted. During May 1996, Dimension (dithiopyr) injured the turf 12% when applied at the normal rate [0.6 kg/ha (0.5 lb/A)], but the injury was 35% in plots treated with three times recommended. Dimension did not cause any injury in 1997. Surflan (oryzalin) at 3.4 kg/ha (3.0 lb/A) and XL (benefin + oryzalin) at 3.4 kg/ha (3.0 lb/A) caused a maximum of 26% and 20% injury, respectively, when applied at the recommended rates. Maximum injury ranged from 48% for Surflan and 38% for XL when applied to plots at the three times recommended. The quality of PI 509018-1, SIPV-2, and AP-10 was generally higher than Adalayd from early spring until late August both years.


Author(s):  
Luisa Martelloni ◽  
Marco Fontanelli ◽  
Lisa Caturegli ◽  
Monica Gaetani ◽  
Nicola Grossi ◽  
...  

Weed control is crucial to ensure that turfgrass is established effectively. Although herbicides are commonly used to control weeds in turfgrasses, environmental and public health concerns have led to limiting or banning the use of synthetic herbicides in urban areas. The species seashore paspalum (Paspalum vaginatumSw.) is susceptible to such herbicides. Flame weeding could be an alternative to the use of synthetic herbicides for selective weed control in seashore paspalum. In this study, five different liquefied petroleum gas (LPG) doses of flaming (0, 61, 91, 157 and 237 kg ha-1) were tested in order to find the optimal dose, in terms of weed control and costs. The aim was to maintain a seashore paspalum (cultivar ‘Salam’) turf free of weeds during spring green-up, and at the same time avoid damaging the turfgrass. Using a self-propelled machine designed and built at the University of Pisa, flaming was applied three times when weeds started growing and the turfgrass started green-up. Our results highlight that an LPG dose of 157 kg ha-1was the most economic dose that led to a significant reduction in initial weed cover and density, enabling the turfgrass to recover three weeks after the third application.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 676c-676
Author(s):  
David Staats ◽  
James E. Klett

In June 1991, a two year field study was initiated to examine if three non-turf groundcovers with reputations for using low amounts of water actually use less water than Kentucky bluegrass (KBG). Irrigation treatments were based on percentages of ET (100%, 75%, 50%, 25%, 0%) and calculated by the modified Penman equation. Results from the 1991 season indicate that at the 100% and 75% treatments Potentilla tabernaemontani and Cerastium tomentosum were significantly better than the other species in terms of establishment and vigor but quality declined significantly at rates below 75%. At the 50% rate both KBG and Sedum acre maintained good quality although growth was slow. At the 25% rate, quality of KBG significantly declined while Sedum acre maintained good quality. Quality of Sedum acre declined only slightly at the 0% treatment and would be a good alternative to KBG if water conservation was a high priority in the landscape.


2010 ◽  
Vol 24 (1) ◽  
pp. 28-32 ◽  
Author(s):  
Barry J. Brecke ◽  
Daniel O. Stephenson ◽  
J. Bryan Unruh

Tolerance of sprigged ‘Tifsport’ and ‘Tifdwarf’ bermudagrass, ‘Meyer’ zoysiagrass, and ‘Salam’ seashore paspalum to oxadiazon (2,240 g/ha) or quinclorac (840 g/ha) applied 1 wk before sprigging (WBS), at sprigging (AS), 2 wk after sprigging (WAS), and 4 WAS was investigated in the field. Weed control was also evaluated. For both herbicides only the AS application timing injured the turfgrass greater than 22%, and injury for the other application timings ranged from 9 to 19% 5 WAS. When evaluated 8 WAS turfgrass injury following the AS application timing remained at 19%, and injury for all other timings was 8% or less. Eight WAS the 1 WBS, AS, 2 WAS, and 4 WAS application timings achieved 89, 79, 94, and 99% plot coverage, respectively, when averaged over all turfgrass species/cultivars and herbicides. By 13 WAS, all species/cultivars achieved at least 90% plot coverage. Presprigging applications of oxadiazon provided 98 to 100% goosegrass and old world diamond-flower control. Quinclorac applied AS provided greater than 70% control of these weeds. Results indicate that oxadiazon and quinclorac applied AS will cause unacceptable turfgrass injury. If goosegrass and/or old world diamond-flower are problematic, oxadiazon is a feasible choice for control of these weeds, but quinclorac is not.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Sharif Ahmed ◽  
Bhagirath Singh Chauhan

A field study was conducted in the boro season of 2011-12 and aman season of 2012 at Jessore, Bangladesh, to evaluate the performance of sequential applications of preemergence herbicides (oxadiargyl 80 g ai ha−1, pendimethalin 850 g ai ha−1, acetachlor + bensulfuranmethyl 240 g ai ha−1, and pyrazosulfuron 15 g ai ha−1) followed by a postemergence herbicide (ethoxysulfuron 18 g ai ha−1) in dry-seeded rice. All evaluated herbicides reduced weed density and biomass by a significant amount. Among herbicides, pendimethalin, oxadiargyl, and acetachlor + bensulfuranmethyl performed very well against grasses; pyrazosulfuron, on the other hand, was not effective. The best herbicide for broadleaf weed control was oxadiargyl (65–85% control); pendimethalin and acetachlor + bensulfuraonmethyl were not effective for this purpose. The best combination for weed control was oxadiargyl followed by ethoxysulfuron in the boro season and oxadiargyl followed by a one-time hand weeding in the aman season. Compared with the partial weedy plots (hand weeded once), oxadiargyl followed by ethoxysulfuron (4.13 t ha−1) provided a 62% higher yield in the boro season while oxadiargyl followed by a one-time hand weeding (4.08 t ha−1) provided a 37% higher yield in the aman season.


2006 ◽  
Vol 20 (3) ◽  
pp. 612-616 ◽  
Author(s):  
J. Bryan Unruh ◽  
Daniel O. Stephenson ◽  
Barry J. Brecke ◽  
Laurie E. Trenholm

Field studies were conducted to assess the tolerance of seashore paspalum (‘Salam’) to postemergence (POST) herbicides in Florida in 2000 and 2001. POST applications of bentazon (2,200 g/ha), clopyralid (420 g/ha), dicamba (280 g/ha), halosulfuron (70 g/ha), imazaquin (420 g/ha), mecoprop + 2,4-D + dicamba (160 + 180 + 40 g/ha), metsulfuron (30 g/ha), and quinclorac (1,700 g/ha) resulted in ≤10% injury 7 and 15 d after treatment (DAT), indicating their safety for POST application. Clethodim (280 g/ha) and sethoxydim (310 g/ha) caused 67 and 46% injury, respectively, 15 DAT averaged across 2000 and 2001. Ethofumesate was inconsistent between years, causing 30 and 60% injury 7 and 15 DAT, respectively, in 2000, but only 5 and 13% 7 and 15 DAT, respectively, in 2001. Imazapic and trifloxysulfuron-sodium caused an average of 47% injury 7 DAT in 2000 and 45% injury 15 DAT in 2001. Clethodim, ethofumesate, imazapic, sethoxydim, and trifloxysulfuron-sodium can not be safely applied POST to Salam seashore paspalum; however, bentazon, clopyralid, dicamba, halosulfuron, imazaquin, mecoprop + 2,4-D + dicamba, metsulfuron, and quinclorac are safe.


2019 ◽  
Vol 29 (3) ◽  
pp. 251-257
Author(s):  
Alex J. Lindsey ◽  
Joseph DeFrank ◽  
Zhiqiang Cheng

The use of nonpotable water for irrigation on various sport venues has led to an increased use of seashore paspalum (Paspalum vaginatum) turf in Hawaii. An ongoing challenge many seashore paspalum turf managers struggle with is bermudagrass (Cynodon dactylon) infestations. Herbicide efficacy studies were conducted at the Hoakalei Country Club [‘SeaDwarf’ seashore paspalum (fairway cut)] and the Magoon Research Station [‘SeaStar’ seashore paspalum (grown in container)] on the island of Oahu in Hawaii. Spray applications of the herbicides mesotrione, topramezone, metribuzin, and ethofumesate were evaluated alone and in tank mixtures for bermudagrass suppression and seashore paspalum injury. At the Hoakalei Country Club, maximum bermudagrass injury with minimal seashore paspalum discoloration was obtained with tank mixes of mesotrione (0.06 lb/acre) + metribuzin (0.19 lb/acre) + ethofumesate (1.00 lb/acre) and topramezone (0.02 lb/acre) + metribuzin (0.19 lb/acre) + ethofumesate (1.00 lb/acre). Unacceptable seashore paspalum turf injury was obtained in all treatments that did not include metribuzin. At the Magoon Research Station, maximum selective bermudagrass suppression was achieved with tank mixes of topramezone (0.01 lb/acre) + ethofumesate (1.00 lb/acre) and topramezone (0.01 lb/acre) + metribuzin (0.09 lb/acre) + ethofumesate (1.00 lb/acre). The addition of metribuzin and/or ethofumesate to the tank mix safened (reduced turf discoloration) seashore paspalum to topramezone or mesotrione foliar bleaching. Tank mixes of mesotrione, topramezone, metribuzin, and ethofumesate have the potential for bermudagrass suppression and control of other grassy weeds in seashore paspalum turf.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1074D-1074
Author(s):  
Charles L. Webber ◽  
Vincent M. Russo ◽  
James W. Shrefler

Non-pungent jalapeño peppers are used for making commercial picante sauces (salsas) and have a potential for outstanding yields in Oklahoma. There is incomplete information on the crop safety of certain herbicides that may not specifically address their use with non-pungent jalapeño peppers. The objective of this research was to determine the weed control efficacy and safety of a combination of preplant incorporated herbicides on transplanted non-pungent jalapeño pepper production. A field study was conducted during the Summer 2005 on 91-cm-wide raised beds at Lane, Okla. The herbicides in the study included napropramide (2.2 kg a.i./ha), clomazone (1.1 kg a.i./ha), bensulide (6.7 kg a.i./ha), and trifluralin (1.1 kg a.i./ha) used separately and in combination with one of the other herbicides. All herbicides were applied preplant-incorporated just prior to transplanting `Pace 105' non-pungent jalapeño peppers on 6 May 2005. Fruit were harvested on 21 July 2005, 76 days after transplanting. Plants treated with clomazone used by itself produced the greatest yields (16.4 t/ha) compared to plants treated with the other herbicides used individually, although it was not significantly greater than napropramide, 9.2 t/ha. Four of the five top-yielding herbicide treatments included the use of clomazone. The tank mixture of napropramide and bensulide produced the second greatest yield (16.2 t/ha). The weed-free treatment produced 17.5 t/ha compared to 86% yield reduction for the weedy check. These results demonstrated that clomazone, used individually or in combination with certain other herbicides, can maintain non-pungent jalapeño yields equivalent to weed-free levels.


2019 ◽  
Vol 50 (3) ◽  
pp. 105-112
Author(s):  
Luisa Martelloni ◽  
Marco Fontanelli ◽  
Lisa Caturegli ◽  
Monica Gaetani ◽  
Nicola Grossi ◽  
...  

Weed control is crucial to ensure that turfgrass is established effectively. Although herbicides are commonly used to control weeds in turfgrasses, environmental and public health concerns have led to limiting or banning the use of synthetic herbicides in urban areas. The species seashore paspalum (Paspalum vaginatum Sw.) is susceptible to such herbicides. Flame weeding could be an alternative to the use of synthetic herbicides for selective weed control in seashore paspalum. In this study, five different liquefied petroleum gas (LPG) doses of flaming (0, 61, 91, 157 and 237 kg ha–1) were tested in order to find the optimal dose, in terms of weed control and costs. The aim was to maintain a seashore paspalum (cultivar ‘Salam’) turf free of weeds during spring greenup, and at the same time avoid damaging the turfgrass. Using a self-propelled machine designed and built at the University of Pisa, flaming was applied three times when weeds started growing and the turfgrass started green-up. Our results highlight that an LPG dose of 157 kg ha–1 was the most economic dose that led to a significant reduction in initial weed cover and density, enabling the turfgrass to recover three weeks after the third application.


Sign in / Sign up

Export Citation Format

Share Document