The Influence of Weed Management in Wheat (Triticum aestivum) Stubble on Weed Control in Corn (Zea mays)

1998 ◽  
Vol 12 (3) ◽  
pp. 522-526 ◽  
Author(s):  
Theodore M. Webster ◽  
John Cardina ◽  
Mark M. Loux

The objectives of this study were to determine how the timing of weed management treatments in winter wheat stubble affects weed control the following season and to determine if spring herbicide rates in corn can be reduced with appropriately timed stubble management practices. Field studies were conducted at two sites in Ohio between 1993 and 1995. Wheat stubble treatments consisted of glyphosate (0.84 kg ae/ha) plus 2,4-D (0.48 kg ae/ha) applied in July, August, or September, or at all three timings, and a nontreated control. In the following season, spring herbicide treatments consisted of a full rate of atrazine (1.7 kg ai/ha) plus alachlor (2.8 kg ai/ha) preemergence, a half rate of these herbicides, or no spring herbicide treatment. Across all locations, a postharvest treatment of glyphosate plus 2,4-D followed by alachlor plus atrazine at half or full rates in the spring controlled all broadleaf weeds, except giant ragweed, at least 88%. Giant foxtail control at three locations was at least 83% when a postharvest glyphosate plus 2,4-D treatment was followed by spring applications of alachlor plus atrazine at half or full rates. Weed control in treatments without alachlor plus atrazine was variable, although broadleaf control from July and August glyphosate plus 2,4-D applications was greater than from September applications. Where alachlor and atrazine were not applied, August was generally the best timing of herbicide applications to wheat stubble for reducing weed populations the following season.

Weed Science ◽  
1998 ◽  
Vol 46 (1) ◽  
pp. 105-110 ◽  
Author(s):  
William G. Johnson ◽  
Jeffrey S. Dilbeck ◽  
Michael S. DeFelice ◽  
J. Andrew Kendig

Field studies were conducted at three locations in 1993 and 1994 to evaluate weed control and crop response to metolachlor plus combinations of 0.5 × and 1 × label rates of imazaquin applied preplant and imazethapyr applied early postemergence or postemergence in no-till narrow-row soybean production. Giant foxtail, common ragweed, common cocklebur, and large crabgrass population reductions were greater with sequential preplant metolachlor plus imazaquin followed by early postemergence or postemergence imazethapyr than with preplant metolachlor plus imazaquin or early postemergence/postemergence imazethapyr alone. Ivyleaf morningglory was not effectively controlled by any herbicide program. Pennsylvania smartweed populations were reduced with all herbicide treatments. Soybean yields with treatments utilizing 0.5 × rates were usually equal to 1 × rates if imazethapyr was applied early postemergence or postemergence. Net income with reduced herbicide rates was equal to full-label rates and provided no greater risk to net income.


2004 ◽  
Vol 18 (4) ◽  
pp. 1018-1022 ◽  
Author(s):  
Joyce Tredaway Ducar ◽  
John W. Wilcut ◽  
John S. Richburg

Field studies were conducted in 1992 and 1993 to evaluate imazapic alone and in postemergence (POST) mixtures with atrazine or bentazon for weed control in imidazolinone-resistant corn treated with carbofuran. Nicosulfuron and nicosulfuron plus atrazine also were evaluated. Imazapic at 36 and 72 g ai/ha controlled large crabgrass 85 and 92%, respectively, which was equivalent to control obtained with nicosulfuron plus atrazine. Imazapic at the higher rate controlled large crabgrass better than nicosulfuron alone. Imazapic at 36 and 72 g/ha controlled Texas panicum 88 and 99%, respectively, and at the higher rate control was equivalent to that obtained with nicosulfuron alone or in mixture with atrazine. Imazapic plus bentazon POST controlled Texas panicum less than imazapic at the lower rate applied alone. Redroot pigweed was controlled 100% with all herbicide treatments. Imazapic at either rate alone or in tank mixture with bentazon or atrazine controlled prickly sida >99%, which was superior to control obtained with nicosulfuron or nicosulfuron plus atrazine. Smallflower, entireleaf, ivyleaf, pitted, and tall morningglories were controlled 96% or greater with all herbicide treatments except nicosulfuron alone. Sicklepod control was >88% with all imazapic treatments, whereas control from nicosulfuron alone was 72%. Corn yields were improved by the addition of POST herbicides with no differences among POST herbicide treatments.


2013 ◽  
Vol 93 (4) ◽  
pp. 669-674 ◽  
Author(s):  
Nader Soltani ◽  
Robert E. Nurse ◽  
Peter H. Sikkema

Soltani, N., Nurse, R. E. and Sikkema, P. H. 2013. Weed management in white beans with postemergence herbicide tankmixes. Can. J. Plant Sci. 93: 669–674. Weed control efficacy of cloransulam-methyl, halosulfuron, bentazon, fomesafen and their tankmixes applied post-emergence (POST) for weed management in white bean was evaluated in field studies conducted in four Ontario locations during 2008–2011. Cloransulam-methyl, halosulfuron, bentazon, fomesafen, bentazon plus fomesafen, cloransulam-methyl plus bentazon, cloransulam-methyl plus fomesafen, cloransulam-methyl plus bentazon plus fomesafen, halosulfuron plus bentazon, halosulfuron plus fomesafen, and halosulfuron plus bentazon plus fomesafen caused white bean injury ranging from 1 to 18%. Control for AMARE, AMBEL and CHEAL ranged from 47 to 92%, 66 to 98% and 36 to 91%, respectively, among herbicide treatments. Similar results were observed for weed density and biomass of AMARE, AMBEL, and CHEAL. Cloransulam-methyl, halosulfuron, and cloransulam-methyl plus fomesafen reduced the yield of white bean by 34, 21, and 17%, respectively, compared with the weed-free control. However, bentazon, fomesafen, bentazon plus fomesafen, cloransulam-methyl plus bentazon, cloransulam-methyl plus bentazon plus fomesafen, halosulfuron plus bentazon, halosulfuron plus fomesafen, and halosulfuron plus bentazon plus fomesafen had no adverse effect on yield of white bean. Based on these results, tankmixes of cloransulam-methyl and halosulfuron with bentazon and fomesafen can reduce crop injury and provide control of broadleaf weeds in white bean.


1999 ◽  
Vol 13 (3) ◽  
pp. 478-483 ◽  
Author(s):  
Jimmy D. Wait ◽  
William G. Johnson ◽  
Raymond E. Massey

Field studies were conducted at two locations in 1997 and 1998 to evaluate crop injury, weed control, yield, and net economic returns of single and sequential postemergence applications of labeled and reduced rates of glyphosate to no-till, glyphosate-resistant soybean planted in narrow rows. Sequential applications provided at least 91% control of giant foxtail, while single applications provided at least 86% control with labeled rates and 68–93% control with reduced rates. Common waterhemp control was slightly higher with sequential vs. single treatments and with labeled rates vs. reduced rates. Velvetleaf control was greater than 96% with all treatments. Common cocklebur control was 90% or higher with all treatments except a single application of glyphosate at 210 g/ha. Lower control of giant foxtail and common waterhemp with single-application, reduced-rate treatments in two of the four trials resulted in lower yields. Overall, sequential applications, regardless of rate, provided greater weed control, yield, and net income and lower coefficients of variation (C.V.s) of net income than reduced-rate single applications. Single-application treatments showed a trend of decreased weed control, yield, and net income and higher C.V.s of net income with reduced rates of glyphosate.


2010 ◽  
Vol 24 (4) ◽  
pp. 523-528 ◽  
Author(s):  
Jon-Joseph Q. Armstrong ◽  
Christy L. Sprague

Planting glyphosate-resistant sugarbeet in narrow rows could improve weed control with fewer herbicide applications and cultivations. Field studies were conducted in 2007 and 2008 at multiple locations in Michigan to compare weed management and sugarbeet yield and quality in glyphosate-resistant sugarbeet planted in 38-, 51-, and 76-cm rows. At all locations, weed densities and biomass were less after glyphosate treatments than after conventional herbicide treatments. Weed densities and biomass also were less in 38- and 51-cm rows compared with 76-cm rows following a single glyphosate application when weeds were 10 cm tall. Averaged over row width, sugarbeet treated with glyphosate when weeds first reached 2 cm in height and again as needed thereafter yielded similarly to sugarbeet treated when weeds were 5 to 10 cm tall. However, root yields were reduced when glyphosate application was delayed until weeds averaged 15 cm in height. Sugarbeet root and sugar yields were greater from 38- and 51-cm row widths than from the 76-cm row widths, averaged over all herbicide treatments. Regardless of row width, initial glyphosate applications should be made before weeds reach 10 cm in height to maximize yield and minimize weed competition with sugarbeet.


Weed Science ◽  
1991 ◽  
Vol 39 (2) ◽  
pp. 232-237 ◽  
Author(s):  
J. Boyd Carey ◽  
Michael S. Defelice

Field studies were conducted to evaluate the influence of herbicide application timing on weed control in no-till soybean production. Row spacing generally had no effect on weed control. Herbicide treatments containing chlorimuron plus metribuzin applied as many as 45 days prior to planting in 1988 and 1989 controlled broadleaf weeds throughout the growing season. Imazaquin applied 45 and 30 days prior to planting provided poor control of common cocklebur in 1989. Giant foxtail control was inconsistent with all herbicide treatments. Soybean yields subsequent to early preplant herbicide applications were greater than or equal to those in which applications were made at planting when late-season weed control was adequate. Herbicides applied preemergence did not control high densities of common lambsquarters in 1989.


2012 ◽  
Vol 26 (1) ◽  
pp. 37-42 ◽  
Author(s):  
Daniel O. Stephenson ◽  
Jason A. Bond

Field studies were conducted in Louisiana and Mississippi in 2009 and 2010 to evaluate PRE herbicide treatments containing isoxaflutole or a prepackaged mixture of thiencarbazone-methyl : isoxaflutole (TCM : isoxaflutole) for weed control in corn. PRE treatments included the premix of TCM : isoxaflutole alone (30 : 80 g ai ha−1) and with atrazine (1,120 g ai ha−1), isoxaflutole alone (90 g ai ha−1) and with atrazine (1,120 g ai ha−1), and the premix of atrazine plus S-metolachlor (1,820 plus 1,410 g ai ha−1). POST treatments included glufosinate (450 g ai ha−1) or glyphosate (870 g ae ha−1) applied to 30-cm corn along with a no POST treatment. All PRE treatments controlled barnyardgrass, entireleaf morningglory, rhizomatous johnsongrass, Palmer amaranth, and velvetleaf 87 to 95% 4 wk after planting (WAP) and browntop millet and hophornbeam copperleaf were controlled 86 to 95% 8 WAP. Weed control was improved 8 and 20 WAP when either POST treatment was applied. TCM : isoxaflutole plus atrazine controlled barnyardgrass, entireleaf morningglory, Palmer amaranth, and velvetleaf at least 90% 20 WAP regardless of POST treatment. TCM : isoxaflutole plus atrazine provided greater control of browntop millet (90%) than isoxaflutole alone or with atrazine and atrazine plus S-metolachlor where control was 86% 20 WAP. Pooled across POST treatments, all PRE treatments containing isoxaflutole or TCM : isoxaflutole controlled rhizomatous johnsongrass better (74 to 76%) than atrazine plus S-metolachlor (67%). Corn yield following herbicide treatments ranged from 9,280 to 11,040 kg ha−1 compared with 9,110 kg ha−1 for the nontreated. Results indicate that TCM : isoxaflutole or isoxaflutole PRE is an option for use in a corn weed management program and may prolong the use of atrazine where weed resistance may be an issue. Where rhizomatous johnsongrass is a problem, TCM : isoxaflutole or isoxaflutole PRE can provide better control than atrazine plus S-metolachlor PRE. Without PRE treatments, glufosinate or glyphosate was needed for season-long weed control.


Weed Science ◽  
2009 ◽  
Vol 57 (1) ◽  
pp. 103-107 ◽  
Author(s):  
Paolo P. Sanguankeo ◽  
Ramon G. Leon ◽  
Julian Malone

The need for reducing costs and making grape production more sustainable has prompted the search for alternative weed control practices that optimize production while maintaining profits. For this reason, it is imperative to understand how different weed management practices modify vine–weed interactions. In the present study, we evaluated the effect on weed growth and Zinfandel grapevine growth and production of five weed control practices: (1) flumioxazin, (2) simazine, (3) cultivation, (4) cover crop, and (5) untreated control. The herbicide treatments had the lowest weed biomass, followed by the cultivation, being approximately 10 and 2 times lower than the weed biomass of either the cover crop or untreated control treatments, respectively. However, the differences in grape yield were not as evident. In 2006, a rainy year, the herbicides and cultivation treatments did not differ in grape yield, but the cover crop and untreated control had a reduction of approximately 20% compared with the other treatments. In 2007, a dry year, in comparison to the herbicide treatments, the grape yield reductions of cultivation were around 22%, and those of the cover crop and untreated control were around 48%. Although the cover crop reduced grape yield, it suppressed weed species considered important, such as horseweed, panicle willowherb, scarlet pimpernel, and sowthistle. Also, it was concluded that vines can tolerate a certain amount of weed competition, and that properly timed postemergence control actions (e.g., cultivation or POST herbicides) could provide the necessary level of control to obtain the desired yields. However, under limited soil moisture conditions, the use of PRE herbicides could prove important to maintain vine yield and vigor.


Weed Science ◽  
1995 ◽  
Vol 43 (2) ◽  
pp. 293-297 ◽  
Author(s):  
W. Carroll Johnson ◽  
Benjamin G. Mullinix

Field studies were conducted from 1991 through 1993 to determine the effects of stale seedbed management practices on weed control in peanut. Main plots were four levels of stale seedbed management: deep till (23 cm) and plant the same day (standard system), deep till 6 wk early and shallow till (7.6 cm) at 2 wk intervals prior to planting, deep till 6 wk early and application of glyphosate (1.1 kg ai ha−1) 1 wk prior to planting, and deep till 6 wk early without additional treatment prior to planting. Sub-plots were three levels of weed management following peanut planting; intensive, basic, and cultivation alone. Stale seedbed management practices stimulated weed emergence when followed by other control measures prior to planting. Populations of Florida beggarweed, Texas panicum, and yellow nutsedge were lower when stale seedbeds were shallow tilled at 2 wk intervals prior to planting, resulting in greater peanut yields. Weeds on nontreated stale seedbeds were difficult to control once peanut was planted and reduced yields. Stale seedbed management practices generally had no effect on the quantity of foreign material contaminants originating from weeds, soil, or peanut plant in harvested peanut. These results indicate that shallow tillage on stale seedbeds can reduce weed populations prior to planting and increase peanut yields.


2013 ◽  
Vol 27 (1) ◽  
pp. 78-84 ◽  
Author(s):  
Brett D. Craigmyle ◽  
Jeffrey M. Ellis ◽  
Kevin W. Bradley

A field experiment was conducted in Boone and Callaway counties in Missouri in 2010 and 2011 to investigate herbicide programs for the management of summer annual grass and broadleaf weeds in soybean resistant to 2,4-D and glufosinate. Results revealed that the addition of 0.56, 0.84, or 1.12 kg ha−1 2,4-D (amine) to either or both POST applications of glufosinate in a two-pass POST herbicide program increased control of common waterhemp compared to two POST applications of glufosinate alone. Similar levels of common cocklebur, giant foxtail, large crabgrass, and barnyardgrass control were achieved with any of the two-pass POST programs that contained 2,4-D compared to two-pass POST programs containing glufosinate alone. Similar control of these species was also achieved with the inclusion of 2,4-D in either the first or second pass of glufosinate. Two-pass programs resulted in the highest levels of weed control (90%). Annual grass and broadleaf weed control was as much as 59% lower when one-pass POST herbicide programs were compared to PRE followed by (fb) POST or two-pass POST programs. However, one-pass POST programs were sufficient to obtain exceptional control of common cocklebur and giant foxtail. Across all site years, soybean yields ranged from 2,680 to 3,100 kg ha−1 for all herbicide treatments, but did not differ statistically. Overall, results from these experiments indicate that compared to glufosinate alone, PRE fb POST or two-pass POST herbicide programs that incorporate 2,4-D amine with glufosinate in 2,4-D–resistant soybean enhance control of common waterhemp, while providing similar levels of control of other summer annual grass and broadleaf weeds.


Sign in / Sign up

Export Citation Format

Share Document