Weed Management in Wide- and Narrow-Row Glyphosate-Resistant Sugarbeet

2010 ◽  
Vol 24 (4) ◽  
pp. 523-528 ◽  
Author(s):  
Jon-Joseph Q. Armstrong ◽  
Christy L. Sprague

Planting glyphosate-resistant sugarbeet in narrow rows could improve weed control with fewer herbicide applications and cultivations. Field studies were conducted in 2007 and 2008 at multiple locations in Michigan to compare weed management and sugarbeet yield and quality in glyphosate-resistant sugarbeet planted in 38-, 51-, and 76-cm rows. At all locations, weed densities and biomass were less after glyphosate treatments than after conventional herbicide treatments. Weed densities and biomass also were less in 38- and 51-cm rows compared with 76-cm rows following a single glyphosate application when weeds were 10 cm tall. Averaged over row width, sugarbeet treated with glyphosate when weeds first reached 2 cm in height and again as needed thereafter yielded similarly to sugarbeet treated when weeds were 5 to 10 cm tall. However, root yields were reduced when glyphosate application was delayed until weeds averaged 15 cm in height. Sugarbeet root and sugar yields were greater from 38- and 51-cm row widths than from the 76-cm row widths, averaged over all herbicide treatments. Regardless of row width, initial glyphosate applications should be made before weeds reach 10 cm in height to maximize yield and minimize weed competition with sugarbeet.

1998 ◽  
Vol 12 (3) ◽  
pp. 522-526 ◽  
Author(s):  
Theodore M. Webster ◽  
John Cardina ◽  
Mark M. Loux

The objectives of this study were to determine how the timing of weed management treatments in winter wheat stubble affects weed control the following season and to determine if spring herbicide rates in corn can be reduced with appropriately timed stubble management practices. Field studies were conducted at two sites in Ohio between 1993 and 1995. Wheat stubble treatments consisted of glyphosate (0.84 kg ae/ha) plus 2,4-D (0.48 kg ae/ha) applied in July, August, or September, or at all three timings, and a nontreated control. In the following season, spring herbicide treatments consisted of a full rate of atrazine (1.7 kg ai/ha) plus alachlor (2.8 kg ai/ha) preemergence, a half rate of these herbicides, or no spring herbicide treatment. Across all locations, a postharvest treatment of glyphosate plus 2,4-D followed by alachlor plus atrazine at half or full rates in the spring controlled all broadleaf weeds, except giant ragweed, at least 88%. Giant foxtail control at three locations was at least 83% when a postharvest glyphosate plus 2,4-D treatment was followed by spring applications of alachlor plus atrazine at half or full rates. Weed control in treatments without alachlor plus atrazine was variable, although broadleaf control from July and August glyphosate plus 2,4-D applications was greater than from September applications. Where alachlor and atrazine were not applied, August was generally the best timing of herbicide applications to wheat stubble for reducing weed populations the following season.


Weed Science ◽  
1998 ◽  
Vol 46 (1) ◽  
pp. 105-110 ◽  
Author(s):  
William G. Johnson ◽  
Jeffrey S. Dilbeck ◽  
Michael S. DeFelice ◽  
J. Andrew Kendig

Field studies were conducted at three locations in 1993 and 1994 to evaluate weed control and crop response to metolachlor plus combinations of 0.5 × and 1 × label rates of imazaquin applied preplant and imazethapyr applied early postemergence or postemergence in no-till narrow-row soybean production. Giant foxtail, common ragweed, common cocklebur, and large crabgrass population reductions were greater with sequential preplant metolachlor plus imazaquin followed by early postemergence or postemergence imazethapyr than with preplant metolachlor plus imazaquin or early postemergence/postemergence imazethapyr alone. Ivyleaf morningglory was not effectively controlled by any herbicide program. Pennsylvania smartweed populations were reduced with all herbicide treatments. Soybean yields with treatments utilizing 0.5 × rates were usually equal to 1 × rates if imazethapyr was applied early postemergence or postemergence. Net income with reduced herbicide rates was equal to full-label rates and provided no greater risk to net income.


2004 ◽  
Vol 18 (4) ◽  
pp. 1018-1022 ◽  
Author(s):  
Joyce Tredaway Ducar ◽  
John W. Wilcut ◽  
John S. Richburg

Field studies were conducted in 1992 and 1993 to evaluate imazapic alone and in postemergence (POST) mixtures with atrazine or bentazon for weed control in imidazolinone-resistant corn treated with carbofuran. Nicosulfuron and nicosulfuron plus atrazine also were evaluated. Imazapic at 36 and 72 g ai/ha controlled large crabgrass 85 and 92%, respectively, which was equivalent to control obtained with nicosulfuron plus atrazine. Imazapic at the higher rate controlled large crabgrass better than nicosulfuron alone. Imazapic at 36 and 72 g/ha controlled Texas panicum 88 and 99%, respectively, and at the higher rate control was equivalent to that obtained with nicosulfuron alone or in mixture with atrazine. Imazapic plus bentazon POST controlled Texas panicum less than imazapic at the lower rate applied alone. Redroot pigweed was controlled 100% with all herbicide treatments. Imazapic at either rate alone or in tank mixture with bentazon or atrazine controlled prickly sida >99%, which was superior to control obtained with nicosulfuron or nicosulfuron plus atrazine. Smallflower, entireleaf, ivyleaf, pitted, and tall morningglories were controlled 96% or greater with all herbicide treatments except nicosulfuron alone. Sicklepod control was >88% with all imazapic treatments, whereas control from nicosulfuron alone was 72%. Corn yields were improved by the addition of POST herbicides with no differences among POST herbicide treatments.


2013 ◽  
Vol 27 (3) ◽  
pp. 538-546 ◽  
Author(s):  
Ryan C. Holmes ◽  
Christy L. Sprague

Field studies were conducted in 2010 and 2011 at two locations in Michigan to examine the effect of row width and herbicide combination on weed suppression and yield in the new Type II black bean variety ‘Zorro.' Black bean was planted in 38- and 76-cm rows. Six weed control strategies were examined:S-metolachlor + halosulfuron (PRE),S-metolachlor (PRE) followed by (fb) bentazon + fomesafen (POST), halosulfuron (PRE) fb clethodim (+ fomesafen at one site in one year) (POST), imazamox + bentazon (POST), a weed-free control, and a nontreated control. Weed control and crop injury were evaluated throughout the growing season. In addition, weeds were counted by species in late July, and weed biomass was harvested and weighed at the end of the season. Black bean yield was obtained by direct harvest. Narrow rows reduced weed populations in two of the four site–year combinations (referred to hereafter as site–years), reduced weed biomass in three of the four site–years, and often improved control of upright broadleaf weeds. All herbicide combinations generally reduced weed populations and biomass, but control of specific weeds was variable. Crop injury was generally slight and transient. Yield was greater in narrow rows in two of the four site–years. All herbicide combinations increased yield compared with the nontreated control and resulted in similar yields to one another. Yield and weed suppression was often maximized in narrow rows, while herbicide performance varied by year and weed spectrum.


2013 ◽  
Vol 93 (4) ◽  
pp. 669-674 ◽  
Author(s):  
Nader Soltani ◽  
Robert E. Nurse ◽  
Peter H. Sikkema

Soltani, N., Nurse, R. E. and Sikkema, P. H. 2013. Weed management in white beans with postemergence herbicide tankmixes. Can. J. Plant Sci. 93: 669–674. Weed control efficacy of cloransulam-methyl, halosulfuron, bentazon, fomesafen and their tankmixes applied post-emergence (POST) for weed management in white bean was evaluated in field studies conducted in four Ontario locations during 2008–2011. Cloransulam-methyl, halosulfuron, bentazon, fomesafen, bentazon plus fomesafen, cloransulam-methyl plus bentazon, cloransulam-methyl plus fomesafen, cloransulam-methyl plus bentazon plus fomesafen, halosulfuron plus bentazon, halosulfuron plus fomesafen, and halosulfuron plus bentazon plus fomesafen caused white bean injury ranging from 1 to 18%. Control for AMARE, AMBEL and CHEAL ranged from 47 to 92%, 66 to 98% and 36 to 91%, respectively, among herbicide treatments. Similar results were observed for weed density and biomass of AMARE, AMBEL, and CHEAL. Cloransulam-methyl, halosulfuron, and cloransulam-methyl plus fomesafen reduced the yield of white bean by 34, 21, and 17%, respectively, compared with the weed-free control. However, bentazon, fomesafen, bentazon plus fomesafen, cloransulam-methyl plus bentazon, cloransulam-methyl plus bentazon plus fomesafen, halosulfuron plus bentazon, halosulfuron plus fomesafen, and halosulfuron plus bentazon plus fomesafen had no adverse effect on yield of white bean. Based on these results, tankmixes of cloransulam-methyl and halosulfuron with bentazon and fomesafen can reduce crop injury and provide control of broadleaf weeds in white bean.


1998 ◽  
Vol 12 (4) ◽  
pp. 660-669 ◽  
Author(s):  
Clarence J. Swanton ◽  
Tony J. Vyn ◽  
Kevin Chandler ◽  
Anil Shrestha

Weed management strategies are needed for no-till soybean grown on clay soils. The effect of several weed management strategies on weed biomass, soybean yield, and gross return were evaluated in 1993, 1994, and 1995 on clay soils at two locations in southern Ontario. Soybean seeds were planted in narrow (19 cm) and wide (76 cm) rows with or without a rye cover crop. Herbicide treatments included glyphosate alone, glyphosate followed by imazethapyr + metribuzin applied PRE, and glyphosate followed by acifluorfen + bentazon applied POST. Two additional treatments with interrow cultivation were included in the wide-row soybean plots with glyphosate and glyphosate + PRE treatments. A nontreated check plot without rye was also included. Presence of a cover crop did not affect weed biomass or soybean yield. The glyphosate + broadcast PRE treatment provided the most consistent weed control both in narrow- and wide-row soybean. The weed control in this treatment ranged from 92 to 100%. The other treatments provided variable weed control across years and locations. The narrow- row plots with glyphosate + broadcast PRE treatment provided the most consistent soybean yields that were generally higher than the other treatments and ranged from 2,560 to 3,420 kg/ha. Soybean yields varied across locations and years in other treatments. Similar weed control and soybean yields were obtained with banded PRE herbicide + interrow cultivation and PRE treatments; however, herbicide use was 60% lower in banded PRE herbicide + interrow cultivation treatment. Narrow-row soybean averaged 27% higher gross returns than wide-row soybean for all broadcast herbicide treatments. Narrow-row soybean with PRE herbicide provided the highest gross returns. No-till soybean in narrow rows with preplant glyphosate and broadcast PRE treatment was the most risk-efficient weed management system on clay soils.


2007 ◽  
Vol 21 (4) ◽  
pp. 1082-1088 ◽  
Author(s):  
Dawn E. Nordby ◽  
Dustin L. Alderks ◽  
Emerson D. Nafziger

Field studies were conducted in 2005 at five locations throughout Illinois to determine the effect of maturity date and canopy width characteristics of selected glyphosate-resistant soybean cultivars on competitive ability against weeds. Natural weed populations at all sites were allowed to compete with the soybean cultivars until the V1, V3, V5, or V7 growth stage and then removed with an application of glyphosate. Light-interception readings, weed control ratings, and soybean yield were all measured to compare cultivars. Cultivars of later maturities tended to withstand early season weed competition better and attained higher yields when weeds were removed at later timings than those of earlier maturity. Although canopy width differed moderately among cultivars in some cases, canopy width had no effect on the ability of soybeans to compete with weeds. Thus, choosing soybean cultivars of later maturity might provide more flexibility in weed management and might reduce losses due to weeds, but that benefit needs to be balanced with yield potential.


2012 ◽  
Vol 26 (1) ◽  
pp. 37-42 ◽  
Author(s):  
Daniel O. Stephenson ◽  
Jason A. Bond

Field studies were conducted in Louisiana and Mississippi in 2009 and 2010 to evaluate PRE herbicide treatments containing isoxaflutole or a prepackaged mixture of thiencarbazone-methyl : isoxaflutole (TCM : isoxaflutole) for weed control in corn. PRE treatments included the premix of TCM : isoxaflutole alone (30 : 80 g ai ha−1) and with atrazine (1,120 g ai ha−1), isoxaflutole alone (90 g ai ha−1) and with atrazine (1,120 g ai ha−1), and the premix of atrazine plus S-metolachlor (1,820 plus 1,410 g ai ha−1). POST treatments included glufosinate (450 g ai ha−1) or glyphosate (870 g ae ha−1) applied to 30-cm corn along with a no POST treatment. All PRE treatments controlled barnyardgrass, entireleaf morningglory, rhizomatous johnsongrass, Palmer amaranth, and velvetleaf 87 to 95% 4 wk after planting (WAP) and browntop millet and hophornbeam copperleaf were controlled 86 to 95% 8 WAP. Weed control was improved 8 and 20 WAP when either POST treatment was applied. TCM : isoxaflutole plus atrazine controlled barnyardgrass, entireleaf morningglory, Palmer amaranth, and velvetleaf at least 90% 20 WAP regardless of POST treatment. TCM : isoxaflutole plus atrazine provided greater control of browntop millet (90%) than isoxaflutole alone or with atrazine and atrazine plus S-metolachlor where control was 86% 20 WAP. Pooled across POST treatments, all PRE treatments containing isoxaflutole or TCM : isoxaflutole controlled rhizomatous johnsongrass better (74 to 76%) than atrazine plus S-metolachlor (67%). Corn yield following herbicide treatments ranged from 9,280 to 11,040 kg ha−1 compared with 9,110 kg ha−1 for the nontreated. Results indicate that TCM : isoxaflutole or isoxaflutole PRE is an option for use in a corn weed management program and may prolong the use of atrazine where weed resistance may be an issue. Where rhizomatous johnsongrass is a problem, TCM : isoxaflutole or isoxaflutole PRE can provide better control than atrazine plus S-metolachlor PRE. Without PRE treatments, glufosinate or glyphosate was needed for season-long weed control.


HortScience ◽  
2001 ◽  
Vol 36 (5) ◽  
pp. 884-888 ◽  
Author(s):  
Sujatha Sankula ◽  
Mark J. VanGessel ◽  
Walter E. Kee ◽  
C. Edward Beste ◽  
Kathryne L. Everts

Potential increases in the yield of agronomic crops through enhanced light interception have led many growers to consider using narrow rows in lima bean (Phaseolus lunatus L.). However, no information is available on how narrow row spacing affects weed management or fits into an integrated pest management strategy. To address this, field studies were conducted in Delaware and Maryland in 1996 and 1997 to evaluate the effects of row spacing (38 vs. 76 cm) on weed control, and on yield and quality of lima bean. Weed management inputs were also evaluated with labeled or reduced pre-emergence rates of metolachlor plus imazethapyr applied broadcast or banded. Only 76-cm rows were cultivated according to the standard practice for this production system. In general, row spacing, herbicide rate, and herbicide application method had no effect on lima bean biomass or yield, on weed density, control, or biomass production, or on economic return. However, weed control consistency was improved when wide rows were used, even with reduced herbicide rates, possibly because of cultivation. Using reduced herbicide rates and band applications resulted in 84% less herbicide applied without affecting weed control. Chemical names used: 3-(1-methylethyl)-(1H)-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide (bentazon); 2-[4,5-dihydro-4-methyl-4-(1-methylethyl-4-(1-methylethyl)-5-oxo-1Himidazol-2-yl]-5-ethyl-3-pyridinecarboxylic acid (imazethapyr); 2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide (metolachlor); 2-[1-(ethoxyimino)butyl]-5-[2-ethylthio)propyl]-3-hydroxy-2-cyclohexen-1-one (sethoxydim).


Weed Science ◽  
1987 ◽  
Vol 35 (4) ◽  
pp. 564-567 ◽  
Author(s):  
Dennis R. Cosgrove ◽  
Michael Barrett

The effects of weed control measures in established alfalfa (Medicago sativaL.) on forage yield and quality were investigated at three sites with varying alfalfa densities and weed populations. Herbicide treatments were 0.56 and 1.12 kg/ha metribuzin [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)-one] applied in fall or spring, respectively, 1.68 kg/ha pronamide [3,5-dichloro (N-1,1-dimethyl-2-propynyl)benzamide] applied in fall, and combinations of these treatments. First-harvest forage yields (weeds plus alfalfa) were either reduced or unchanged by herbicide treatments. Total forage yield was not altered by the herbicide treatments, but first-harvest and total alfalfa yield as well as first-harvest forage protein content were increased by several treatments, depending on stand density and weed pressure. Little effect was observed on in vitro digestible dry matter or acid detergent fiber content.


Sign in / Sign up

Export Citation Format

Share Document