scholarly journals Identification of human and bovine rotavirus serotypes by polymerase chain reaction

1992 ◽  
Vol 109 (2) ◽  
pp. 303-312 ◽  
Author(s):  
K. Taniguchi ◽  
F. Wakasugi ◽  
Y. Pongsuwanna ◽  
T. Urasawa ◽  
S. Ukae ◽  
...  

SUMMARYThe use of the polymerase chain reaction (PCR) for identifying serotypes of human and bovine rotaviruses was examined. In the identification of 115 human rotavirus samples in stools, results with PCR showed excellent agreement with results of serotyping by an enzyme-linked immunosorbent assay (ELISA) using serotype-specific monoclonal antibodies. Furthermore, the PCR showed a much higher sensitivity (93%) than the ELISA test (82·6%). The PCR method could also be applied for identifying the serotype of bovine rotaviruses.

2006 ◽  
Vol 96 (3) ◽  
pp. 320-325 ◽  
Author(s):  
Nieves Capote ◽  
M. Teresa Gorris ◽  
M. Carmen Martínez ◽  
Margarita Asensio ◽  
Antonio Olmos ◽  
...  

The dynamics of virus interference between two isolates of Plum pox virus (PPV) belonging to the main PPV types, D and M, were analyzed in Japanese plum (Prunus salicina) by challenge inoculations. To assess the consequences of a PPV-M infection on plum already infected with PPV-D, and vice versa (predominance of one of the strains, recombination, synergism, symptoms aggravation, and so on), 30 Japanese plum trees were graft inoculated with PPV-D or PPV-M isolates in quarantine conditions. One year postinoculation, in the event that the inoculated isolates were detected in the whole plant, a second challenge inoculation (PPV-M or PPV-D, respectively) was performed by grafting. The presence of PPV-D, PPV-M, or both was monitored for 7 years by double-antibody sandwich indirect enzyme-linked immunosorbent assay using specific monoclonal antibodies. Reverse transcription-polymerase chain reaction (RT-PCR) with D- and M-specific primers confirmed the serological typing. Real-time RT-PCR assays were performed using D- and M-specific fluorescent 3′ minor groove binder-DNA probes, which were able to detect and quantify PPV populations in the inoculated plants with greater precision. The presence of PPV-D in Japanese plum did not cross-protect the trees against PPV-M infection. In PPV-D-infected plants, the PPV-M strain used as challenge inoculum behaved differently depending on the plum cultivar assayed. In cv. Black Diamond, PPV-M invaded the plant progressively, displacing the previous PPV-D population; whereas, in cv. Sun Gold, both PPV isolates coexisted in the plant. In contrast, the PPV-D isolate used was unable to infect plants of both cultivars in which a PPV-M population already was established. After 7 years, no synergism was observed and no recombination event between PPV-D and PPV-M genomes was detected.


Plant Disease ◽  
2000 ◽  
Vol 84 (5) ◽  
pp. 559-561 ◽  
Author(s):  
A. G. Gillaspie ◽  
R. N. Pittman ◽  
D. L. Pinnow ◽  
B. G. Cassidy

An immunocapture-reverse transcription-polymerase chain reaction (IC-RT-PCR) method was developed for testing peanut (Arachis hypogaea) seed lots for infection by Peanut stripe virus (PStV) and Peanut mottle virus (PeMV). A small slice was removed from each seed distal to the radicle of a random 100-seed sample, the slices were extracted in buffer and centrifuged, and a portion of the supernatant was incubated in a tube that had been coated with antiserum to either PStV or PeMV. Following immunocapture of the virus, the tube was washed, the RT-PCR mix (with primers designed from conserved sequences within the capsid region of each virus) was placed in the same tubes, and the test completed. Results obtained on 15 previously untested seed lots from the collection indicated good correlation between virus detected by the IC-RT-PCR method and virus detected from the same seed lots by enzyme-linked immunosorbent assay (ELISA). The IC-RT-PCR method detected three lots infected with PeMV and none with PStV from 106 seed lots grown in Ecuador (results confirmed by ELISA). The IC-RT-PCR method is more sensitive than ELISA (currently used on samples consisting of five seeds), is useful for testing large numbers of seed lots of peanut germ plasm, and could be adapted to test other plants and detect other viruses.


1998 ◽  
Vol 88 (3) ◽  
pp. 198-204 ◽  
Author(s):  
T. Candresse ◽  
M. Cambra ◽  
S. Dallot ◽  
M. Lanneau ◽  
M. Asensio ◽  
...  

Plum pox potyvirus (PPV) isolates may be divided into four groups separated by serological, molecular, and epidemiological differences. Monoclonal antibodies specific for the two major groups of isolates, represented by the D and M serotypes of the virus, have been obtained. Polymerase chain reaction (PCR)-based assays allowing the direct detection and differentiation of PPV isolates have also been developed. We now report on a large-scale comparison of these two typing approaches. The results obtained show an overall excellent correlation between the results obtained in indirect double-antibody sandwich enzyme-linked immunosorbent assay using PPV-D— and PPV-M—specific monoclonal antibodies and those derived from either specific PCR assays or restriction fragment length polymorphism analysis of PCR fragments. Without exception, all isolates reacting positively with the PPV-M—specific monoclonal antibody were found to belong to the M serotype using the PCR-based assays, while 51 out of 53 isolates recognized by the D-specific monoclonal antibodies belonged to the D serotype according to the PCR typing results. However, failure to react with a specific monoclonal antibody did not prove as effective a predictor of the serotype of the isolate analyzed. In a few cases, the results obtained with the various techniques diverged, indicating low level variability of the epitopes recognized by the serotype-specific monoclonal antibodies. Isolates belonging to the two minor groups of PPV (El Amar and Cherry) also gave divergent results, indicating that the current typing assays are not suited for the analysis of such isolates.


Intervirology ◽  
2021 ◽  
pp. 1-6
Author(s):  
Salman Khan ◽  
Syed Asad Ali Shah ◽  
Syed Muhammad Jamal

<b><i>Background:</i></b> Foot-and-mouth disease (FMD) is an infectious and highly contagious disease of cloven-hoofed domestic and wild animals, causing heavy economic losses to the livestock industry. Rapid and reliable diagnosis of the disease is essential for the implementation of effective control measures. This study compared sandwich enzyme-linked immunosorbent assay (S-ELISA) and conventional reverse transcription polymerase chain reaction (RT-PCR) for the diagnosis of FMD. <b><i>Methods:</i></b> A total of 60 epithelial samples from suspected cases of FMD were tested using both S-ELISA and RT-PCR assays. The level of agreement between the assays was assessed by calculating the Kappa value. <b><i>Results:</i></b> S-ELISA detected 38 (63%) samples positive for FMD virus (FMDV). Being predominant, serotype O was detected in 22 (57.9%) of the total samples tested positive, whereas 9 (23.7%) and 7 (18.4%) samples were found positive for serotypes A and Asia-1, respectively. RT-PCR detected viral genome in 51 (85%) of the samples using pan-FMDV primers set, 1F/1R. Thirty-six samples were found positive and 7 negative by both the tests. The level of agreement between the tests was assessed by calculating the Kappa value, which was found to be fair (Kappa value = 0.303 and 95% CI = 0.089; 0.517) and significant (<i>p</i> = 0.009). However, 2 samples, which were found positive on S-ELISA tested negative on RT-PCR. This may be attributed to the presence of nucleotide mismatch(es) in the primer-binding sites that may have resulted in failure of amplification of the viral genome. The serotype-specific RT-PCR assays not only confirmed serotyping results of S-ELISA but were also able to establish serotype in 9 S-ELISA-negative but pan-FMDV RT-PCR-positive samples. <b><i>Conclusions:</i></b> The RT-PCR assay contributes significantly to establishing a quick, sensitive, and definitive diagnosis of FMD in resource-constrained countries. Samples giving negative results in S-ELISA should be tested in RT-PCR for the disease detection and virus typing.


Sign in / Sign up

Export Citation Format

Share Document