scholarly journals An investigation of possible routes of transmission of lumpy skin disease virus (Neethling)

1995 ◽  
Vol 114 (1) ◽  
pp. 219-226 ◽  
Author(s):  
V. M. Carn ◽  
R. P. Kitching

SUMMARYBritish cattle were infected with the South African (Neethling) strain of lumpy skin disease virus (LSDV) and their clinical signs monitored over a 3-week period. Different routes of infection were assessed for effect on the clinical characteristics of the disease by using a clinical scoring system. Neither of 2 animals inoculated onto the conjunctival sac showed clinical signs or seroconverted. The intradermal route produced local lesions in 21 of 25 animals, and generalized infection in 4. In contrast the intravenous route produced generalized lesions in 8 of 11 animals. Seven uninfected animals were housed in contact with infected animals for 1 month. None developed clinical signs or produced detectable serum neutralizing antibodies. Six of seven of these animals were then challenged and were fully susceptible to infection. The results suggest that the transmission of LSDV between animals by contagion is extremely inefficient, and that parenteral inoculation of virus is required to establish infection. The high proportion of animals with generalized disease following intravenous inoculation implies that naturally occurring cases of generalized LSD may follow spread by intravenously feeding arthropods.

Animals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 477
Author(s):  
Arman Issimov ◽  
Lespek Kutumbetov ◽  
Mukhit B. Orynbayev ◽  
Berik Khairullin ◽  
Balzhan Myrzakhmetova ◽  
...  

Samples collected for PCR from recipient animals tested positive in 5 out of 6 cases, while the virus was isolated from 4 of 6 animals. The clinical signs exhibited by recipient animals were mostly moderate in nature with only one severe case. To our knowledge, this is the first time that transmission of LSDV by three Stomoxys species has been demonstrated, and their role as mechanical vectors of LSDV is indicated.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Shukes Chandra Badhy ◽  
Mohammad Golam Azam Chowdhury ◽  
Tirumala Bharani Kumar Settypalli ◽  
Giovanni Cattoli ◽  
Charles Euloge Lamien ◽  
...  

Abstract Background Lumpy skin disease (LSD) is a contagious viral disease of cattle caused by lumpy skin disease virus (LSDV). LSD has recently spread in Asia following outbreaks in the Middle East and Europe. The disease emerged in Bangladesh in July 2019 in the Chattogram district, then rapidly spread throughout the entire country. We investigated six LSD outbreaks in Bangladesh to record the clinical signs and collect samples for diagnostic confirmation. Furthermore, we performed the molecular characterization of Bangladesh isolates, analyzing the full RPO30 and GPCR genes and the partial EEV glycoprotein gene. Results Clinical observations revealed common LSD clinical signs in the affected cattle. PCR and real-time PCR, showed the presence of the LSDV genome in samples from all six districts. Phylogenetic analysis and detailed inspection of multiple sequence alignments revealed that Bangladesh isolates differ from common LSDV field isolates encountered in Africa, the Middle East, and Europe, as well as newly emerged LSDV variants in Russia and China. Instead, they were closely related to LSDV KSGP-0240, LSDV NI2490, and LSDV Kenya. Conclusions These results show the importance of continuous monitoring and characterization of circulating strains and the need to continually refine the strategies for differentiating vaccine strains from field viruses.


2018 ◽  
Vol 65 (6) ◽  
pp. 2043-2048 ◽  
Author(s):  
Eirini I. Agianniotaki ◽  
Shawn Babiuk ◽  
Panagiotis-Dimitrios Katsoulos ◽  
Serafeim C. Chaintoutis ◽  
Anastasia Praxitelous ◽  
...  

Author(s):  
Samah M. Mosad ◽  
Nesma Rasheed ◽  
Hanaa S. Ali ◽  
Khaled A. S. El-Khabaz ◽  
Eman A. M. Shosha ◽  
...  

Lumpy skin disease (LSD) is an infectious economically important viral disease of cattle. Lumpy skin disease virus (LSDV) is still circulating in Egypt, despite the annual mass vaccination with sheep pox virus vaccine recommended by the Egyptian authorities. This study was carried out on two farms of pregnant Holstein cows vaccinated with Bovivax LSD-N® Vaccine (farm I) and Servac Capri-C vaccine® (farm II). After 40-60 days post-vaccination, mild clinical signs were detected in 3% of cows on the farm I whereas a more severe clinical infection was developed in 40% of cows on farm II. LSDV was isolated on the chorioallantoic membrane (CAM) of 11 days old embryonated chicken egg (ECEs) and Madin Darby bovine kidney (MDBK) tissue culture. LSDV was identified in collected skin tissues by Transmission electron microscopy (TEM) and histopathological examination. Finally, LSDV was confirmed by polymerase chain reaction (PCR) amplification at 192 base pair (bp) of the P32 gene and two samples were selected for DNA sequencing. LSDV developed characteristic pock lesions in inoculated ECEs. MDBK cell culture developed a prominent LSDV cytopathic effect at the 3rd passage. Viral particles were detected in the cytoplasm of both epidermal cells and dermal macrophages by TEM. Histopathological examination revealed different lesions correlated withLSDV infection age. LSDV was confirmed in all tested samples by PCR. Our strains (Dakahlia- 2020-1 and Dakahlia- 2020-2) were closely related to other Egyptian LSDV strains on GenBank with 98.2%-100% identity. The present study proved conclusive evidence that the live attenuated sheep poxvirus vaccine poorly protects Egyptian cattle against LSDV, while the LSDV Neethling strain vaccine gave a promising and sufficient protection rate


2012 ◽  
Vol 141 (2) ◽  
pp. 425-430 ◽  
Author(s):  
E. S. M. TUPPURAINEN ◽  
J. C. LUBINGA ◽  
W. H. STOLTSZ ◽  
M. TROSKIE ◽  
S. T. CARPENTER ◽  
...  

SUMMARYLumpy skin disease (LSD) is an economically important, acute or sub-acute, viral disease of cattle that occurs across Africa and in the Middle East. The aim of this study was to investigate if lumpy skin disease virus (LSDV) can be transmitted mechanically by African brown ear ticks (Rhipicephalus appendiculatus Neum.). Laboratory-bred R. appendiculatus males were fed on experimentally infected viraemic ‘donor’ cattle. Partially fed male ticks were then transferred to feed on an uninfected ‘recipient’ cow. The recipient animal became viraemic, showed mild clinical signs of LSD and seroconverted. Additionally, R. appendiculatus males were found to transmit LSDV through feeding on skin lacking visible lesions, demonstrating that viraemic animals without lesions at the feeding site of ticks may be a source of infection. This is the first time that transmission of poxviruses by a tick species has been demonstrated and the importance of this mode of transmission in the spread of LSDV in endemic settings is discussed.


Vaccines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 473
Author(s):  
Andy Haegeman ◽  
Ilse De Leeuw ◽  
Laurent Mostin ◽  
Willem Van Campe ◽  
Laetitia Aerts ◽  
...  

Vaccines form the cornerstone of any control, eradication and preventative strategy and this is no different for lumpy skin disease. However, the usefulness of a vaccine is determined by a multiplicity of factors which include stability, efficiency, safety and ease of use, to name a few. Although the vaccination campaign in the Balkans against lumpy skin disease virus (LSDV) was successful and has been implemented with success in the past in other countries, data of vaccine failure have also been reported. It was therefore the purpose of this study to compare five homologous live attenuated LSDV vaccines (LSDV LAV) in a standardized setting. All five LSDV LAVs studied were able to protect against a challenge with virulent LSDV. Aside from small differences in serological responses, important differences were seen in side effects such as a local reaction and a Neethling response upon vaccination between the analyzed vaccines. These observations can have important implications in the applicability in the field for some of these LSDV LAVs.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Halima Rhazi ◽  
Najete Safini ◽  
Karima Mikou ◽  
Meryeme Alhyane ◽  
Khalid Omari Tadlaoui ◽  
...  

Abstract Background Animal vaccination is an important way to stop the spread of diseases causing immense damage to livestock and economic losses and the potential transmission to humans. Therefore effective method for vaccine production using simple and inexpensive bioprocessing solutions is very essential. Conventional culture systems currently in use, tend to be uneconomic in terms of labor and time involved. Besides, they offer a limited surface area for growth of cells. In this study, the CelCradle™-500A was evaluated as an alternative to replace conventional culture systems in use such as Cell factories for the production of viral vaccines against small ruminant morbillivirus (PPR), rift valley fever virus (RVF) and lumpy skin disease virus (LSD). Results Two types of cells Vero and primary Lamb Testis cells were used to produce these viruses. The study was done in 2 phases as a) optimization of cell growth and b) virus cultivation. Vero cells could be grown to significantly higher cell densities of 3.04 × 109 using the CelCradle™-500A with a shorter doubling time as compared to 9.45 × 108 cells in Cell factories. This represents a 19 fold increase in cell numbers as compared to seeding vs only 3.7 fold in Cell factories. LT cells achieved modestly higher cell densities of 6.7 × 108 as compared to 6.3 × 108 in Cell factories. The fold change in densities for these cells was 3 fold in the CelCradle™-500A vs 2.5 fold in Cell factories. The titers in the conventional system and the bioreactor were not significantly different. However, the Cell-specific virus yield for rift valley fever virus and lumpy skin disease virus are higher (25 virions/cell for rift valley fever virus, and 21.9 virions/cell for lumpy skin disease virus versus 19.9 virions/cell for rift valley fever virus and 10 virions/cell for lumpy skin disease virus). Conclusions This work represents a novel study for primary lamb testis cell culture in CellCradle™-500A bioreactors. In addition, on account of the high cell densities obtained and the linear scalability the titers could be further optimized using other culture process such us perfusion.


Author(s):  
Zeinab Hedayati ◽  
Hamid Reza Varshovi ◽  
Ali Mohammadi ◽  
Mohammad Tabatabaei

Sign in / Sign up

Export Citation Format

Share Document