scholarly journals Studies of the presence of verocytotoxic Escherichia coli O157 in bovine faeces submitted for diagnostic purposes in England and Wales and on beef carcases in abattoirs in the United Kingdom

1998 ◽  
Vol 120 (2) ◽  
pp. 187-192 ◽  
Author(s):  
M. S. RICHARDS ◽  
J. D. CORKISH ◽  
A. R. SAYERS ◽  
I. M. McLAREN ◽  
S. J. EVANS ◽  
...  

A survey of beef carcases in abattoirs in the UK was carried out in order to estimate the prevalence of contamination with verocytotoxin – producing Escherichia coli (VTEC) serogroup O157. Contamination with verocytotoxin-producing E. coli (VTEC) O157 was confirmed in 0·47% of the 4067 (95% confidence limits 0·22–1·00%) of neck muscle samples. A significant tendency for carcases present in the same abattoir on the same day to have similar results was found, thus suggesting cross contamination.VTEC O157 was found in 0·83% of 6495 bovine faeces samples routinely submitted for diagnostic purposes to Veterinary Investigation Centres in England and Wales. Of the samples from cattle less than 6 months old, 3·7% of 68 samples from animals without gastrointestinal disease were positive for E. coli O157, in contrast to 0·75% of 2321 samples from cases of gastrointestinal disease. No association with season or herd type (beef or dairy) was found.

2013 ◽  
Vol 76 (11) ◽  
pp. 1838-1845 ◽  
Author(s):  
GORDON R. DAVIDSON ◽  
ANNEMARIE L. BUCHHOLZ ◽  
ELLIOT T. RYSER

Chemical sanitizers are routinely used during commercial flume washing of fresh-cut leafy greens to minimize cross-contamination from the water. This study assessed the efficacy of five commercial sanitizer treatments against Escherichia coli O157:H7 on iceberg lettuce, in wash water, and on equipment during simulated commercial production in a pilot-scale processing line. Iceberg lettuce (5.4 kg) was inoculated to contain 106 CFU/g of a four-strain cocktail of nontoxigenic, green fluorescent protein–labeled, ampicillin-resistant E. coli O157:H7 and processed after 1 h of draining at ~22°C. Lettuce was shredded using a commercial slicer, step-conveyed to a flume tank, washed for 90 s using six different treatments (water alone, 50 ppm of peroxyacetic acid, 50 ppm of mixed peracid, or 50 ppm of available chlorine either alone or acidified to pH 6.5 with citric acid [CA] or T-128), and then dried using a shaker table and centrifugal dryer. Various product (25-g) and water (50-ml) samples collected during processing along with equipment surface samples (100 cm2) from the flume tank, shaker table, and centrifugal dryer were homogenized in neutralizing buffer and plated on tryptic soy agar. During and after iceberg lettuce processing, none of the sanitizers were significantly more effective (P ≤ 0.05) than water alone at reducing E. coli O157:H7 populations on lettuce, with reductions ranging from 0.75 to 1.4 log CFU/g. Regardless of the sanitizer treatment used, the centrifugal dryer surfaces yielded E. coli O157:H7 populations of 3.49 to 4.98 log CFU/100 cm2. Chlorine, chlorine plus CA, and chlorine plus T-128 were generally more effective (P ≤ 0.05) than the other treatments, with reductions of 3.79, 5.47, and 5.37 log CFU/ml after 90 s of processing, respectively. This indicates that chlorine-based sanitizers will likely prevent wash water containing low organic loads from becoming a vehicle for cross-contamination.


2011 ◽  
Vol 74 (3) ◽  
pp. 352-358 ◽  
Author(s):  
YAGUANG LUO ◽  
XIANGWU NOU ◽  
YANG YANG ◽  
ISABEL ALEGRE ◽  
ELLEN TURNER ◽  
...  

This study was conducted to investigate the effect of free chlorine concentrations in wash water on Escherichia coli O157:H7 reduction, survival, and transference during washing of fresh-cut lettuce. The effectiveness of rewashing for inactivation of E. coli O157:H7 on newly cross-contaminated produce previously washed with solutions containing an insufficient amount of chlorine also was assessed. Results indicate that solutions containing a minimum of 0.5 mg/liter free chlorine were effective for inactivating E. coli O157:H7 in suspension to below the detection level. However, the presence of 1 mg/liter free chlorine in the wash solution before washing was insufficient to prevent E. coli O157:H7 survival and transfer during washing because the introduction of cut lettuce to the wash system quickly depleted the free chlorine. Although no E. coli O157:H7 was detected in the wash solution containing 5 mg/liter free chlorine before washing a mix of inoculated and uninoculated lettuce, low numbers of E. coli O157:H7 cells were detected on uninoculated lettuce in four of the seven experimental trials. When the prewash free chlorine concentration was increased to 10 mg/liter or greater, no E. coli O157:H7 transfer was detected. Furthermore, although rewashing newly cross-contaminated lettuce in 50 mg/liter free chlorine for 30 s significantly reduced (P = 0.002) the E. coli O157:H7 populations, it failed to eliminate E. coli O157:H7 on lettuce. This finding suggests that rewashing is not an effective way to correct for process failure, and maintaining a sufficient free chlorine concentration in the wash solution is critical for preventing pathogen cross-contamination.


2018 ◽  
Vol 23 (18) ◽  
Author(s):  
Maya Gobin ◽  
Jeremy Hawker ◽  
Paul Cleary ◽  
Thomas Inns ◽  
Daniel Gardiner ◽  
...  

We investigated a large outbreak of Escherichia coli O157 in the United Kingdom (UK) with 165 cases between 31 May and 29 July 2016. No linked cases were reported in other countries. Cases were predominately female (n = 128) and adult (n = 150), 66 attended hospital and nine had features of haemorrhagic uraemic syndrome. A series of epidemiological studies (case–control, case–case, ingredients-based and venue-based studies) and supply chain investigations implicated mixed salad leaves from Supplier A as the likely outbreak vehicle. Whole genome sequencing (WGS) indicated a link with strains from the Mediterranean and informed the outbreak control team to request that Supplier A cease distributing salad leaves imported from Italy. Microbiological tests of samples of salad leaves from Supplier A were negative. We were unable to confirm the source of contamination or the contaminated constituent leaf although our evidence pointed to red batavia received from Italy as the most likely vehicle. Variations in Shiga toxin-producing E. coli surveillance and diagnosis may have prevented detection of cases outside the UK and highlights a need for greater standardisation. WGS was useful in targeting investigations, but greater coverage across Europe is needed to maximise its potential.


2006 ◽  
Vol 11 (22) ◽  
Author(s):  
Collective Editorial team

At least three separate outbreaks of Escherichia coli O157 infections have recently been occurring in Scotland and England


2015 ◽  
Vol 78 (9) ◽  
pp. 1624-1631 ◽  
Author(s):  
MARILYN C. ERICKSON ◽  
JEAN LIAO ◽  
JENNIFER L. CANNON ◽  
YNES R. ORTEGA

Consumers are being advised to increase their consumption of fruits and vegetables to reduce their risk of chronic disease. However, to achieve that goal, consumers must be able to implement protocols in their kitchens to reduce their risk of consuming contaminated produce. To address this issue, a study was conducted to monitor the fate of Escherichia coli O157:H7 and Salmonella on produce (cantaloupe, honeydew melon, carrots, and celery) that were subjected to brushing or peeling using common kitchen utensils. Removal of similar levels of Salmonella from carrots was accomplished by peeling and by brushing, but significantly greater removal of E. coli O157:H7 from carrots was accomplished by peeling than by brushing under running water (P < 0.05). Brushing removed significantly fewer pathogens from contaminated cantaloupes than from other produce items (P < 0.05), suggesting that the netted rind provided sites where the pathogen cells could evade the brush bristles. A Sparta polyester brush was less effective than a scouring pad for removing Salmonella from carrots (P < 0.05). In all cases, brushing and peeling failed to eliminate the pathogens from the produce items, which may be the result of contamination of the utensil during use. High incidences of contamination (77 to 92%) were found among peelers used on carrots or celery, the Sparta brush used on carrots, and the scouring pad used on carrots and cantaloupe. Of the utensils investigated, the nylon brush had the lowest incidence of pathogen transference from contaminated produce (0 to 12%). Transfer of pathogens from a potentially contaminated Sparta brush or peeler to uncontaminated carrots did not occur or occurred only on the first of seven carrots processed with the utensil. Therefore, risk of cross-contamination from contaminated utensils to uncontaminated produce may be limited.


2016 ◽  
Vol 79 (7) ◽  
pp. 1266-1268 ◽  
Author(s):  
ALEXANDER GILL ◽  
GEORGE HUSZCZYNSKI

ABSTRACT An outbreak of five cases of Escherichia coli O157 infection that occurred in Canada in 2012 was linked to frozen beef patties seasoned with garlic and peppercorn. Unopened retail packs of beef patties from the implicated production lot were recovered and analyzed to enumerate E. coli O157, other E. coli strains, and total coliforms. E. coli O157 was not recovered by direct enumeration on selective agar media. E. coli O157 in the samples was estimated at 3.1 most probable number per 140 g of beef patty, other E. coli was 11 CFU/g, and coliforms were 120 CFU/g. These results indicate that the presence of E. coli O157 in ground beef at levels below 0.1 CFU/g may cause outbreaks. However, the roles of temperature abuse, undercooking, and cross-contamination in amplifying the risk are unknown.


2006 ◽  
Vol 69 (6) ◽  
pp. 1248-1255 ◽  
Author(s):  
ROLANDO A. FLORES ◽  
MARK L. TAMPLIN ◽  
BENNE S. MARMER ◽  
JOHN G. PHILLIPS ◽  
PETER H. COOKE

Risk studies have identified cross-contamination during beef fabrication as a knowledge gap, particularly as to how and at what levels Escherichia coli O157:H7 transfers among meat and cutting board (or equipment) surfaces. The objectives of this study were to determine and model transfer coefficients (TCs) between E. coli O157:H7 on beef tissue and high-density polyethylene (HDPE) cutting board surfaces. Four different transfer scenarios were evaluated: (i) HDPE board to agar, (ii) beef tissue to agar, (iii) HDPE board to beef tissue to agar, and (iv) beef tissue to HDPE board to agar. Also, the following factors were studied for each transfer scenario: two HDPE surface roughness levels (rough and smooth), two beef tissues (fat and fascia), and two conditions of the initial beef tissue inoculation with E. coli O157:H7 (wet and dry surfaces), for a total of 24 treatments. The TCs were calculated as a function of the plated inoculum and of the cells recovered from the first contact. When the treatments were compared, all of the variables evaluated interacted significantly in determining the TC. An overall TC-per-treatment model did not adequately represent the reduction of the cells on the original surface after each contact and the interaction of the factors studied. However, an exponential model was developed that explained the experimental data for all treatments and represented the recontamination of the surfaces with E. coli O157:H7. The parameters for the exponential model for cross-contamination with E. coli O157:H7 between beef tissue and HDPE surfaces were determined, allowing for the use of the resulting model in quantitative microbial risk assessment.


2001 ◽  
Vol 64 (6) ◽  
pp. 862-864 ◽  
Author(s):  
S. UHITIL ◽  
S. JAKŠIĆ ◽  
T. PETRAK ◽  
K. BOTKA-PETRAK

A total of 114 beef and baby beef samples were examined. The samples included ground baby beef, mixed ground baby beef and pork, and chopped and shaped meat. The samples were analyzed from 30 different grocery stores in Zagreb, Croatia. The object of this study was to evaluate the prevalence of Escherichia coli O157:H7 in the samples that can enhance the potential risk of outbreaks of hemorrhagic colitis and hemolytic uremic syndrome. The results in all tested samples of E. coli O157:H7 were negative. A single sample was positive in a latex agglutination test using antiserum to O157:H7. It was identified as Proteus vulgaris at the Pasteur Institute, Paris, France. This result correlates positively with cross-contamination with Yersinia enterocolitica 09, Brucella abortus, Salmonella type N, and Pseudomonas maltophila.


2009 ◽  
Vol 72 (3) ◽  
pp. 465-472 ◽  
Author(s):  
PETER J. TAORMINA ◽  
LARRY R. BEUCHAT ◽  
MARILYN C. ERICKSON ◽  
LI MA ◽  
GUODONG ZHANG ◽  
...  

The field-core (cut and core) harvesting technique used for iceberg lettuce was evaluated as a potential means of cross-contamination with Escherichia coli O157:H7. Chlorinated water treatment was evaluated for its efficacy in removing or inactivating the pathogen on the blade portion of the field coring device and on cored lettuce. Field coring devices inoculated by immersing blades in soil containing E. coli O157:H7 at 3.74 or 6.57 log CFU/g contained 3.13 and 4.97 log CFU per blade, respectively. Treatment of inoculated field coring device blades by immersing in chlorinated water (200 μg/ml total chlorine) for 10 s resulted in a reduction of 1.56 log CFU per blade, which was 1.42 log CFU per blade greater than that achieved using water, but insufficient to eliminate the pathogen on blades. Field coring devices inoculated by contacting soil containing E. coli O157:H7 at 2.72 and 1.67 log CFU/g, then repeatedly used to cut and core 10 lettuce heads, transferred the pathogen to 10 and 5 consecutively processed heads, respectively. Lettuce cores remained positive for the pathogen after spraying with 100 μg/ml free chlorine for 120 s at 2.81 kg/cm2 (40 lb/in2), regardless of the inoculum level. The number of E. coli O157:H7 recovered from inoculated lettuce cores treated for 10 s with chlorine was significantly (P ≤ 0.05) different from the number recovered from tissues treated with water. Dipping contaminated field coring devices in chlorinated water may not be effective in killing the pathogen and controlling cross-contamination from head to head. Spraying contaminated lettuce with chlorinated or untreated water reduces but does not eliminate E. coli O157:H7.


2001 ◽  
Vol 64 (11) ◽  
pp. 1655-1660 ◽  
Author(s):  
J. M. McEVOY ◽  
A. M. DOHERTY ◽  
J. J. SHERIDAN ◽  
I. S. BLAIR ◽  
D. A. McDOWELL

This study used a laboratory-scale apparatus to apply subatmospheric steam to bovine hide pieces inoculated with Escherichia coli O157:H7 in maximum recovery diluent (MRD) and in high–liquid content and low–liquid content fecal suspensions (HLC fecal and LLC fecal, respectively). The survival of the organism in fecal clods, which were stored for 24 days in a desiccated state, was assessed. Inoculated fecal clods were also treated with subatmospheric steam. Steam treatment at 80 ± 2°C for 20 s reduced E. coli O157:H7 concentrations on hide inoculated to initial concentrations of approximately 7 log10 CFU/g by 5.46 (MRD inoculum), 4.17 (HLC fecal inoculum), and 5.99 (LLC fecal inoculum) log10 CFU/g. The reductions achieved in samples inoculated with LLC feces were larger than in samples inoculated with HLC feces (P < 0.05). Treatment at 80 ± 2°C for 10 s resulted in significantly smaller reductions (P < 0.05) on hide pieces of 2.54 (MRD), 1.94 (HLC fecal), and 2.15 (LLC fecal) log10 CFU/g. There were no significant differences among the reductions observed in all inoculum types in samples treated for 10 s. E. coli O157:H7 inoculated in fecal clods to 7.78 log10 CFU/g and stored at 4 or 15°C survived for at least 24 days. Steam treatment (20 s) of 3-day-old clods reduced surviving E. coli O157:H7 numbers from 4.20 log10 CFU/g to below the limit of detection of the assay used (1.20 log10 CFU/g). This study shows that steam condensing at or below 80 ± 2°C can reduce E. coli O157:H7 when present on bovine hide, reducing the risk of cross contamination to the carcass during slaughter and dressing.


Sign in / Sign up

Export Citation Format

Share Document