Variability of responses to sinusoidal modulation

1994 ◽  
Vol 11 (1) ◽  
pp. 155-163 ◽  
Author(s):  
Michael W. Levine

AbstractMany studies of visual neurons make use of stimuli that are sinusoidally modulated in time, and take as the response the fundamental Fourier component of the firing. This is a study of the variability of the fundamental sinusoidal components.A theoretical analysis shows that the variance of sinusoidal components should be nearly independent of their amplitudes; this is expected despite the observation that variance of firing rate increases with increasing firing rate. However, this result applies only to the variance of the complex amplitude, defined as the complex Fourier amplitude in response to each stimulus cycle. This variance is called the complex variance. The variance of the scalar amplitude, which is simply the amplitude in response to each stimulus cycle disregarding phase (scalar variance) is expected to shrink by a factor of up to 2⅓ as the response magnitude approaches zero.If the relationship between variance of rate and rate is linear, complex variance should be independent of amplitude. If the relationship between variance of rate and rate is characterized by a compressive nonlinearity (as has been observed), the complex variance should very slightly decrease with increased amplitude, despite the main trend of increased variance of rate with increased rate.Data from cat ganglion cells stimulated with sinusoidally modulated lights of various contrasts agree with the theory, although some individual cases show trends that may be indicative of nonlinearity in the relationship between variance of rate and rate.

2021 ◽  
Vol 11 (2) ◽  
pp. 220-226
Author(s):  
Yew-Song Cheng ◽  
Mario A. Svirsky

The presence of spiral ganglion cells (SGCs) is widely accepted to be a prerequisite for successful speech perception with a cochlear implant (CI), because SGCs provide the only known conduit between the implant electrode and the central auditory system. By extension, it has been hypothesized that the number of SGCs might be an important factor in CI outcomes. An impressive body of work has been published on findings from the laborious process of collecting temporal bones from CI users and counting the number of SGCs to correlate those numbers with speech perception scores, but the findings thus far have been conflicting. We performed a meta-analysis of all published studies with the hope that combining existing data may help us reach a more definitive conclusion about the relationship between SGC count and speech perception scores in adults.


1997 ◽  
Vol 77 (1) ◽  
pp. 405-420 ◽  
Author(s):  
Kelvin E. Jones ◽  
Parveen Bawa

Jones, Kelvin E. and Parveen Bawa. Computer simulation of the responses of human motoneurons to composite 1A EPSPS: effects of background firing rate. J. Neurophysiol. 77: 405–420, 1997. Two compartmental models of spinal alpha motoneurons were constructed to explore the relationship between background firing rate and response to an excitatory input. The results of these simulations were compared with previous results obtained from human motoneurons and discussed in relation to the current model for repetitively firing human motoneurons. The morphologies and cable parameters of the models were based on two type-identified cat motoneurons previously reported in the literature. Each model included five voltage-dependent channels that were modeled using Hodgkin-Huxley formalism. These included fast Na+ and K+ channels in the initial segment and fast Na+ and K+ channels as well as a slow K+ channel in the soma compartment. The density and rate factors for the slow K+ channel were varied until the models could reproduce single spike AHP parameters for type-identified motoneurons in the cat. Excitatory synaptic conductances were distributed along the equivalent dendrites with the same density described for la synapses from muscle spindles to type-identified cat motoneurons. Simultaneous activation of all synapses on the dendrite resulted in a large compound excitatory postsynaptic potential (EPSP). Brief depolarizing pulses injected into a compartment of the equivalent dendrite resulted in pulse potentials (PPs), which resembled the compound EPSPs. The effects of compound EPSPs and PPs on firing probability of the two motoneuron models were examined during rhythmic firing. Peristimulus time histograms, constructed between the stimulus and the spikes of the model motoneuron, showed excitatory peaks whose integrated time course approximated the time course of the underlying EPSP or PP as has been shown in cat motoneurons. The excitatory peaks were quantified in terms of response probability, and the relationship between background firing rate and response probability was explored. As in real human motoneurons, the models exhibited an inverse relationship between response probability and background firing rate. The biophysical properties responsible for the relationship between response probability and firing rate included the shapes of the membrane voltage trajectories between spikes and nonlinear changes in PP amplitude during the interspike interval at different firing rates. The results from these simulations suggest that the relationship between response probability and background firing rate is an intrinsic feature of motoneurons. The similarity of the results from the models, which were based on the properties of cat motoneurons, and those from human motoneurons suggests that the biophysical properties governing rhythmic firing in human motoneurons are similar to those of the cat.


2009 ◽  
Vol 21 (8) ◽  
pp. 2269-2308 ◽  
Author(s):  
Yoram Burak ◽  
Sam Lewallen ◽  
Haim Sompolinsky

We consider a threshold-crossing spiking process as a simple model for the activity within a population of neurons. Assuming that these neurons are driven by a common fluctuating input with gaussian statistics, we evaluate the cross-correlation of spike trains in pairs of model neurons with different thresholds. This correlation function tends to be asymmetric in time, indicating a preference for the neuron with the lower threshold to fire before the one with the higher threshold, even if their inputs are identical. The relationship between these results and spike statistics in other models of neural activity is explored. In particular, we compare our model with an integrate-and-fire model in which the membrane voltage resets following each spike. The qualitative properties of spike cross-correlations, emerging from the threshold-crossing model, are similar to those of bursting events in the integrate-and-fire model. This is particularly true for generalized integrate-and-fire models in which spikes tend to occur in bursts, as observed, for example, in retinal ganglion cells driven by a rapidly fluctuating visual stimulus. The threshold-crossing model thus provides a simple, analytically tractable description of event onsets in these neurons.


Development ◽  
1987 ◽  
Vol 101 (4) ◽  
pp. 857-867 ◽  
Author(s):  
R.W. Guillery ◽  
G. Jeffery ◽  
B.M. Cattanach

Female mice showing albino mosaicism due to an X-autosome translocation [Is(In7;X)Ct] have been studied in order to investigate the relationship between the distribution of melanin and the formation, early in development, of the abnormally small uncrossed retinofugal pathway characteristically found in all albino mammals. Earlier evidence indicates that cells normally bearing melanin play a role in producing the abnormality. In the mosaic mice, the albino gene is expressed in only about half of the cells due to random X-inactivation and the patches of normal and albino cells are extremely small relative to total retinal size (less than 1/50). We argued that if all the cells that would normally bear melanin play a role in producing the albino abnormality then the mosaic mice would have a pathway abnormality, about half the size of that in the albino mice. If, however, only a small patch of these cells plays a role, as has been proposed in earlier studies, then one would expect the size of the uncrossed pathway to be highly variable in the mosaic mice. The size of the uncrossed pathway was assessed by placing horseradish peroxidase in the region of the optic tract and lateral geniculate nucleus unilaterally and then counting the number of retrogradely labelled retinal ganglion cells on the same side. The mosaic mice showed a highly variable uncrossed pathway. In some of the mosaic mice, it was the same size as in the albinos and, in others, it was the same size as in normally pigmented mice. Surprisingly, in a small number of mosaic mice, the uncrossed pathway was larger than normal. Whether this relatively rare occurrence of a supernormal uncrossed pathway is due to the higher gene dosage or to the translocation itself remains an open question.


2005 ◽  
Vol 93 (6) ◽  
pp. 3504-3523 ◽  
Author(s):  
Kenji Morita ◽  
Kunichika Tsumoto ◽  
Kazuyuki Aihara

Recent in vitro experiments revealed that the GABAA reversal potential is about 10 mV higher than the resting potential in mature mammalian neocortical pyramidal cells; thus GABAergic inputs could have facilitatory, rather than inhibitory, effects on action potential generation under certain conditions. However, how the relationship between excitatory input conductances and the output firing rate is modulated by such depolarizing GABAergic inputs under in vivo circumstances has not yet been understood. We examine herewith the input–output relationship in a simple conductance-based model of cortical neurons with the depolarized GABAA reversal potential, and show that a tonic depolarizing GABAergic conductance up to a certain amount does not change the relationship between a tonic glutamatergic driving conductance and the output firing rate, whereas a higher GABAergic conductance prevents spike generation. When the tonic glutamatergic and GABAergic conductances are replaced by in vivo–like highly fluctuating inputs, on the other hand, the effect of depolarizing GABAergic inputs on the input–output relationship critically depends on the degree of coincidence between glutamatergic input events and GABAergic ones. Although a wide range of depolarizing GABAergic inputs hardly changes the firing rate of a neuron driven by noncoincident glutamatergic inputs, a certain range of these inputs considerably decreases the firing rate if a large number of driving glutamatergic inputs are coincident with them. These results raise the possibility that the depolarized GABAA reversal potential is not a paradoxical mystery, but is instead a sophisticated device for discriminative firing rate modulation.


Author(s):  
Baptiste Coudrillier ◽  
Kristin M. Myers ◽  
Thao D. Nguyen

By 2010, 60 million people will have glaucoma, the second leading cause of blindness worldwide [1]. The disease is characterized by a progressive degeneration of the retinal ganglion cells (RGC), a type of neuron that transmits visual information to the brain. It is well know that elevated intraocular pressure (IOP) is a risk factor in the damage to the RGCs [3–5], but the relationship between the mechanical properties of the ocular connective tissue and how it affects cellular function is not well characterized. The cornea and the sclera are collage-rich structures that comprise the outer load-bearing shell of the eye. Their preferentially aligned collagen lamellae provide mechanical strength to resist ocular expansion. Previous uniaxial tension studies suggest that altered viscoelastic material properties of the eye wall play a role in glaucomatous damage [6].


1978 ◽  
Vol 41 (2) ◽  
pp. 338-349 ◽  
Author(s):  
R. C. Schreiner ◽  
G. K. Essick ◽  
B. L. Whitsel

1. The present study is based on the demonstration (8, 9) that the relationship between mean interval (MI) and standard deviation (SD) for stimulus-driven activity recorded from SI neurons is well fitted by the linear equation SD = a X MI + b and on the observations that the values of the slope (a) and y intercept (b) parameters of this relationship are independent of stimulus conditions and may vary widely from one neuron to the next (8). 2. A criterion for the discriminability of two different mean firing rates requiring that the mean intervals of their respective interspike interval (ISI) distributions be separated by a fixed interval (expressed in SD units) is developed and, on the basis of this criterion, a graphical display of the capacity of a neuron with a known SD-MI relationship to reflect a change in stimulus conditions with a change in mean firing rate is derived. Using this graphical approach, it is shown that the parameters of the SD-MI relationship for a single neuron determine a range of firing frequencies, within which that neuron exhibits the greatest capacity to signal differences in stimulus conditions using a frequency code. 3. The discrimination criterion is modified to incorporate the changes in the symmetry of the ISI distribution observed to accompany changes in mean firing rate. It is shown that, although the observed symmetry changes do influence the capacity of a cortical neuron to signal a change in stimulus conditions with a change in mean firing rate, they do not alter the range of firing rates (determined by the parameters of the SD-MI relationship) within which the capacity for discrimination is maximal. 4. The maximal number of firing levels that can be distinguished by a somatosensory cortical neuron (using the same discrimination criterion described above) discharging within a specified range of mean frequencies also is demonstrated to depend on the parameters of the linear equation which relates SD to MI. 5. Two approaches based on the t test for differences between two means are developed in an attempt to ascertain the minimum separation of the mean intervals of the ISI distributions necessary for two different mean firing rates to be discriminated with 80% certainty.


Sign in / Sign up

Export Citation Format

Share Document