The sequential processing of visual motion in the human electroretinogram and visual evoked potential

2000 ◽  
Vol 17 (4) ◽  
pp. 631-646 ◽  
Author(s):  
MATTHIAS KORTH ◽  
RAINER RIX ◽  
OTTO SEMBRITZKI

Mechanisms of motion vision in the human have been studied extensively by psychophysical methods but less frequently by electrophysiological techniques. It is the purpose of the present investigation to study electrical potentials of the eye (electroretinogram, ERG) and of the brain (visual evoked potential, VEP) in response to moving regular square-wave stripe patterns spanning a wide range of contrasts, spatial frequencies, and speeds. The results show that ERG amplitudes increase linearly with contrast while VEPs, in agreement with the literature, show an amplitude saturation at low contrast. Furthermore, retinal responses oscillate with the fundamental temporal stimulus frequency of the moving pattern while brain responses do not. In both the retina and the brain, the response amplitudes are tuned to certain speeds which is in agreement with the nonlinear correlation-type motion detector. Along the ascending slopes (which means increasing amplitudes) of the tuning functions, the ERG curves overlap at all spatial frequencies if plotted as a function of temporal stimulation frequency. The ascending slopes of the tuning functions of the VEP overlap if plotted as a function of speed. The descending slopes (which means decreasing amplitudes) of the tuning functions show little (ERG) or no (VEP) overlap and the waveforms at high speeds approach pattern-offset-onset responses. These observations suggest that in the retina motion processing along the ascending slopes of the tuning curves takes place by coding the temporal stimulation frequency which depends on the spatial frequency of the moving pattern. In the brain, however, motion processing is by speed independent of spatial frequency. Simple calculations show that the VEP information is decoded from the ERG signal into a speed signal.

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5309
Author(s):  
Akira Ikeda ◽  
Yoshikazu Washizawa

The steady-state visual evoked potential (SSVEP), which is a kind of event-related potential in electroencephalograms (EEGs), has been applied to brain–computer interfaces (BCIs). SSVEP-based BCIs currently perform the best in terms of information transfer rate (ITR) among various BCI implementation methods. Canonical component analysis (CCA) or spectrum estimation, such as the Fourier transform, and their extensions have been used to extract features of SSVEPs. However, these signal extraction methods have a limitation in the available stimulation frequency; thus, the number of commands is limited. In this paper, we propose a complex valued convolutional neural network (CVCNN) to overcome the limitation of SSVEP-based BCIs. The experimental results demonstrate that the proposed method overcomes the limitation of the stimulation frequency, and it outperforms conventional SSVEP feature extraction methods.


2011 ◽  
Vol 123 (2) ◽  
pp. 65-73 ◽  
Author(s):  
Koichi Shibata ◽  
Kiyomi Yamane ◽  
Yoshiko Nishimura ◽  
Hiromi Kondo ◽  
Kuniaki Otuka

2002 ◽  
Vol 19 (5) ◽  
pp. 645-650 ◽  
Author(s):  
THOMAS STEPHAN HEINRICH ◽  
MICHAEL BACH

Contrast adaptation occurs in both the retina and the cortex. Defining its spatial dependence is crucial for understanding its potential roles. We thus asked to what degree contrast adaptation depends on spatial frequency, including cross-adaptation. Measuring the pattern electroretinogram (PERG) and the visual evoked potential (VEP) allowed separating retinal and cortical contributions. In ten subjects we recorded simultaneous PERGs and VEPs. Test stimuli were sinusoidal gratings of 98% contrast with spatial frequencies of 0.5 or 5.0 cpd, phase reversing at 17 reversals/s. Adaptation was controlled by prolonged presentation of these test stimuli or homogenous gray fields of the same luminance. When adaptation and test frequency were identical, we observed significant contrast adaptation only at 5 cpd: an amplitude reduction in the PERG (−22%) and VEP (−58%), and an effective reduction of latency in the PERG (−0.95 ms). When adapting at 5 cpd and testing at 0.5 cpd, the opposite effect was observed: enhancement of VEP amplitude by +26% and increase in effective PERG latency by +1.35 ms. When adapting at 0.5 cpd and testing at 5 cpd, there was no significant amplitude change in PERG and VEP, but a small effective PERG latency increase of +0.65 ms. The 0.5-cpd channel was not adapted by spatial frequencies of 0.5 cpd. The adaptability of the 5-cpd channel may mediate improved detail recognition after prolonged blur. The existence of both adaptable and nonadaptable mechanisms in the retina allows for the possibility that by comparing the adaptational state of spatial-frequency channels the retina can discern between overall low contrast and defocus in emmetropization control.


2000 ◽  
Vol 131 (1) ◽  
pp. 121-125 ◽  
Author(s):  
Kenji Arakawa ◽  
Shozo Tobimatsu ◽  
Shizuka Kurita-Tashima ◽  
Miyuki Nakayama ◽  
Jun-Ichi Kira ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document