Contrast adaptation in retinal and cortical evoked potentials: No adaptation to low spatial frequencies

2002 ◽  
Vol 19 (5) ◽  
pp. 645-650 ◽  
Author(s):  
THOMAS STEPHAN HEINRICH ◽  
MICHAEL BACH

Contrast adaptation occurs in both the retina and the cortex. Defining its spatial dependence is crucial for understanding its potential roles. We thus asked to what degree contrast adaptation depends on spatial frequency, including cross-adaptation. Measuring the pattern electroretinogram (PERG) and the visual evoked potential (VEP) allowed separating retinal and cortical contributions. In ten subjects we recorded simultaneous PERGs and VEPs. Test stimuli were sinusoidal gratings of 98% contrast with spatial frequencies of 0.5 or 5.0 cpd, phase reversing at 17 reversals/s. Adaptation was controlled by prolonged presentation of these test stimuli or homogenous gray fields of the same luminance. When adaptation and test frequency were identical, we observed significant contrast adaptation only at 5 cpd: an amplitude reduction in the PERG (−22%) and VEP (−58%), and an effective reduction of latency in the PERG (−0.95 ms). When adapting at 5 cpd and testing at 0.5 cpd, the opposite effect was observed: enhancement of VEP amplitude by +26% and increase in effective PERG latency by +1.35 ms. When adapting at 0.5 cpd and testing at 5 cpd, there was no significant amplitude change in PERG and VEP, but a small effective PERG latency increase of +0.65 ms. The 0.5-cpd channel was not adapted by spatial frequencies of 0.5 cpd. The adaptability of the 5-cpd channel may mediate improved detail recognition after prolonged blur. The existence of both adaptable and nonadaptable mechanisms in the retina allows for the possibility that by comparing the adaptational state of spatial-frequency channels the retina can discern between overall low contrast and defocus in emmetropization control.

Perception ◽  
1979 ◽  
Vol 8 (5) ◽  
pp. 529-539 ◽  
Author(s):  
Alison Bowling ◽  
William Lovegrove ◽  
Barry Mapperson

The visual persistence of sinusoidal gratings of varying spatial frequency and contrast was measured. It was found that the persistence of low-contrast gratings was longer than that of high-contrast stimuli for all spatial frequencies investigated. At higher contrast levels of 1 and 4 cycles deg−1 gratings, a tendency for persistence to be independent of contrast was observed. For 12 cycles deg−1 gratings, however, persistence continued to decrease with increasing contrast. These results are compared with recently published data on other temporal responses, and are discussed in terms of the different properties of sustained and transient channels.


Author(s):  
Homa Hassankarimi ◽  
Ebrahim Jafarzadehpur ◽  
Alireza Mohammadi ◽  
Seyed Mohammad Reza Noori

Purpose: To evaluate the pattern-reversal visual evoked potential (PRVEP) in lowcontrast, spatial frequencies in time, frequency, and time-frequency domains. Methods: PRVEP was performed in 31 normal eyes, according to the International Society of Electrophysiology of Vision (ISCEV) protocol. Test stimuli had checkerboard of 5% contrast with spatial frequencies of 1, 2, and 4 cycles per degree (cpd). For each VEP waveform, the time domain (TD) analysis, Fast Fourier Transform(FFT), and discrete wavelet transform (DWT) were performed using MATLAB software. The VEP component changes as a function of spatial frequency (SF) were compared among time, frequency, and time–frequency dimensions. Results: As a consequence of increased SF, a significant attenuation of the P100 amplitude and prolongation of P100 latency were seen, while there was no significant difference in frequency components. In the wavelet domain, an increase in SF at a contrast level of 5% enhanced DWT coefficients. However, this increase had no meaningful effect on the 7P descriptor. Conclusion: At a low contrast level of 5%, SF-dependent changes in PRVEP parameters can be better identified with the TD and DWT approaches compared to the Fourier approach. However, specific visual processing may be seen with the wavelet transform.


2000 ◽  
Vol 17 (4) ◽  
pp. 631-646 ◽  
Author(s):  
MATTHIAS KORTH ◽  
RAINER RIX ◽  
OTTO SEMBRITZKI

Mechanisms of motion vision in the human have been studied extensively by psychophysical methods but less frequently by electrophysiological techniques. It is the purpose of the present investigation to study electrical potentials of the eye (electroretinogram, ERG) and of the brain (visual evoked potential, VEP) in response to moving regular square-wave stripe patterns spanning a wide range of contrasts, spatial frequencies, and speeds. The results show that ERG amplitudes increase linearly with contrast while VEPs, in agreement with the literature, show an amplitude saturation at low contrast. Furthermore, retinal responses oscillate with the fundamental temporal stimulus frequency of the moving pattern while brain responses do not. In both the retina and the brain, the response amplitudes are tuned to certain speeds which is in agreement with the nonlinear correlation-type motion detector. Along the ascending slopes (which means increasing amplitudes) of the tuning functions, the ERG curves overlap at all spatial frequencies if plotted as a function of temporal stimulation frequency. The ascending slopes of the tuning functions of the VEP overlap if plotted as a function of speed. The descending slopes (which means decreasing amplitudes) of the tuning functions show little (ERG) or no (VEP) overlap and the waveforms at high speeds approach pattern-offset-onset responses. These observations suggest that in the retina motion processing along the ascending slopes of the tuning curves takes place by coding the temporal stimulation frequency which depends on the spatial frequency of the moving pattern. In the brain, however, motion processing is by speed independent of spatial frequency. Simple calculations show that the VEP information is decoded from the ERG signal into a speed signal.


2010 ◽  
Vol 9 (8) ◽  
pp. 312-312
Author(s):  
C. Duncan ◽  
E. Roth ◽  
Y. Mizokami ◽  
M. Crognale

Perception ◽  
1995 ◽  
Vol 24 (11) ◽  
pp. 1257-1264
Author(s):  
Shigeru Ichihara ◽  
Kenji Susami

Three experiments on temporal-discontinuity detection were carried out. In experiment 1, temporal-discontinuity thresholds were measured for sinusoidal gratings by the use of the double-staircase method. A sinusoidal grating was presented twice successively. The subject judged whether or not an interval was present. The temporal-discontinuity threshold increased as the spatial frequency of the grating increased, but decreased as the contrast of the grating increased. In experiment 2, contrast-modulated gratings were used instead of the sinusoidal grating. The temporal-discontinuity threshold increased as the carrier frequency increased, and the threshold for each contrast-modulated grating was similar to that for the no-modulation (sinusoidal) grating whose contrast was the same as the maximum local contrast of the contrast-modulated grating. In experiment 3, temporal-discontinuity thresholds were measured for low-contrast (3%) sinusoidal gratings. The thresholds were very low, even for such low-contrast gratings. These results suggest that the low-spatial-frequency channels are not involved in detecting the modulation frequency of the contrast-modulated grating. Rather, the local contrast seems to be the determinant of the detection of the contrast-modulated grating itself.


2014 ◽  
Vol 20 (14) ◽  
pp. 1841-1850 ◽  
Author(s):  
S Rossi ◽  
C Motta ◽  
V Studer ◽  
C Rocchi ◽  
G Macchiarulo ◽  
...  

Background: Acute optic neuritis is often in association with multiple sclerosis (MS). Proinflammatory cytokines trigger neuronal damage in neuroinflammatory disorders but their role in optic neuritis is poorly investigated. Objective: The objective of this work is to investigate the associations of intrathecal contents of proinflammatory cytokines with transient and persistent dysfunctions after optic neuritis. Methods: In 50 MS patients followed for up to six months, cerebrospinal fluid (CSF) levels of IL-1β, TNF and IL-8 were determined, along with clinical, neurophysiological and morphological measures of optic neuritis severity. Results: Visual impairment, measured by high- and low-contrast visual acuity, and delayed visual-evoked potential (VEP) latencies were significantly correlated to IL-8 levels during optic neuritis. IL-8 at the time of optic neuritis was also associated with persistent demyelination and final axonal loss, inferred by VEP and optical coherence tomography measures, respectively. Contents of IL-8 were correlated to functional visual outcomes, being higher among patients with incomplete recovery. Multivariate analysis confirmed that IL-8 significantly predicted final visual acuity, at equal values of demographics and baseline visual scores. Conclusion: Our study points to IL-8 as the main inflammatory cytokine associated with demyelination and secondary neurodegeneration in the optic nerve after optic neuritis.


Sign in / Sign up

Export Citation Format

Share Document