The unitary event amplitude of mouse retinal on-cone bipolar cells

2003 ◽  
Vol 20 (6) ◽  
pp. 621-626 ◽  
Author(s):  
AMY BERNTSON ◽  
W. ROWLAND TAYLOR

Light-evoked synaptic currents were recorded from on-cone bipolar cells in the mouse retina. Fluctuations in the synaptic current observed during maintained light steps were analyzed in order to estimate the amplitude of the underlying unitary event. The maximal synaptic current variance was 5-fold larger than the maximum expected from fluctuations in the number of active postsynaptic channels. Due to uncertainty in the contribution from channel variance, we calculated a range of values for the unitary event amplitude. The observed variance could be accounted for if 30–39 synaptic sites randomly generated unitary events with a waveform identical to the flash-response, and an amplitude of −3.1 to −2.4 pA. The amplitude is consistent with gating about five mGluR6 channels. The shape of the variance–mean relation suggests that in bright light transmitter release approaches zero, while in darkness transmitter release saturates the postsynaptic response. Thus the on-cone bipolar cell synapse is operating over its entire possible range. If it is assumed that the postsynaptic response saturates when one unitary event occurs per integration time, then a lower bound for the unitary event rate is 18 events/s/synaptic site. If the unitary event is generated by a single synaptic vesicle, the results suggest the total vesicle cycling rate available for encoding the on-cone bipolar cell signal is about 540–700 s−1.

2017 ◽  
Vol 34 ◽  
Author(s):  
PATRICK W. KEELEY ◽  
JASON J. KIM ◽  
SAMMY C.S. LEE ◽  
SILKE HAVERKAMP ◽  
BENJAMIN E. REESE

AbstractRetinal bipolar cells spread their dendritic arbors to tile the retinal surface, extending them to the tips of the dendritic fields of their homotypic neighbors, minimizing dendritic overlap. Such uniform nonredundant dendritic coverage of these populations would suggest a degree of spatial order in the properties of their somal distributions, yet few studies have examined the patterning in retinal bipolar cell mosaics. The present study examined the organization of two types of cone bipolar cells in the mouse retina, the Type 2 cells and the Type 4 cells, and compared their spatial statistical properties with those of the horizontal cells and the cholinergic amacrine cells, as well as to random simulations of cells matched in density and constrained by soma size. The Delauney tessellation of each field was computed, from which nearest neighbor distances and Voronoi domain areas were extracted, permitting a calculation of their respective regularity indexes (RIs). The spatial autocorrelation of the field was also computed, from which the effective radius and packing factor (PF) were determined. Both cone bipolar cell types were found to be less regular and less efficiently packed than either the horizontal cells or cholinergic amacrine cells. Furthermore, while the latter two cell types had RIs and PFs in excess of those for their matched random simulations, the two types of cone bipolar cells had spatial statistical properties comparable to random distributions. An analysis of single labeled cone bipolar cells revealed dendritic arbors frequently skewed to one side of the soma, as would be expected from a randomly distributed population of cells with dendrites that tile. Taken together, these results suggest that, unlike the horizontal cells or cholinergic amacrine cells which minimize proximity to one another, cone bipolar cell types are constrained only by their physical size.


2007 ◽  
Vol 507 (1) ◽  
pp. 1087-1101 ◽  
Author(s):  
Silke Haverkamp ◽  
Dana Specht ◽  
Sriparna Majumdar ◽  
Nikhat F. Zaidi ◽  
Johann Helmut Brandstätter ◽  
...  

2012 ◽  
Vol 107 (10) ◽  
pp. 2649-2659 ◽  
Author(s):  
A. Cyrus Arman ◽  
Alapakkam P. Sampath

The nervous system frequently integrates parallel streams of information to encode a broad range of stimulus strengths. In mammalian retina it is generally believed that signals generated by rod and cone photoreceptors converge onto cone bipolar cells prior to reaching the retinal output, the ganglion cells. Near absolute visual threshold a specialized mammalian retinal circuit, the rod bipolar pathway, pools signals from many rods and converges on depolarizing (AII) amacrine cells. However, whether subsequent signal flow to OFF ganglion cells requires OFF cone bipolar cells near visual threshold remains unclear. Glycinergic synapses between AII amacrine cells and OFF cone bipolar cells are believed to relay subsequently rod-driven signals to OFF ganglion cells. However, AII amacrine cells also make glycinergic synapses directly with OFF ganglion cells. To determine the route for signal flow near visual threshold, we measured the effect of the glycine receptor antagonist strychnine on response threshold in fully dark-adapted retinal cells. As shown previously, we found that response threshold for OFF ganglion cells was elevated by strychnine. Surprisingly, strychnine did not elevate response threshold in any subclass of OFF cone bipolar cell. Instead, in every OFF cone bipolar subclass strychnine suppressed tonic glycinergic inhibition without altering response threshold. Consistent with this lack of influence of strychnine, we found that the dominant input to OFF cone bipolar cells in darkness was excitatory and the response threshold of the excitatory input varied by subclass. Thus, in the dark-adapted mouse retina, the high absolute sensitivity of OFF ganglion cells cannot be explained by signal transmission through OFF cone bipolar cells.


2006 ◽  
Vol 23 (1) ◽  
pp. 127-135 ◽  
Author(s):  
GUO-YONG WANG

Light decrements are mediated by two distinct groups of rod pathways in the dark-adapted retina that can be differentiated on the basis of their sensitivity to the glutamate agonist DL-2-amino-phosphonobutyric (APB). By means of the APB sensitive pathway, rods transmit light decrementsviarod bipolar cells to AII amacrine cells, then to Off cone bipolar cells, which in turn innervate the dendrites of Off ganglion cells. APB hyperpolarizes rod bipolar cells, thus blocking this rod pathway. With APB insensitive pathways, rods either directly synapse onto Off cone bipolar cells, or rods pass light decrement signal to cones by gap junctions. In the present study, whole-cell patch-clamp recordings were made from ganglion cells in the dark-adapted mouse retina to investigate the functional properties of APB sensitive and insensitive rod pathways. The results revealed several clear-cut differences between the APB sensitive and APB insensitive rod pathways. The latency of Off responses to a flashing spot of light was significantly shorter for the APB insensitive pathways than those for the APB sensitive pathway. Moreover, Off responses of the APB insensitive pathways were found to be capable of following substantially higher stimulus frequencies. Nitric oxide was found to selectively block Off responses in the APB sensitive rod pathway. Collectively, these results provide evidence that the APB sensitive and insensitive rod pathways can convey different types of information signaling light decrements in the dark-adapted retina.


2021 ◽  
Author(s):  
Sarah Strauss ◽  
Maria M Korympidou ◽  
Yanli Ran ◽  
Katrin Franke ◽  
Timm Schubert ◽  
...  

Motion is a critical aspect of vision. We studied the representation of motion in mouse retinal bipolar cells and found, surprisingly, that some bipolar cells possess motion-sensing capabilities that rely on their center-surround receptive fields. Using a glutamate sensor, we directly observed motion-sensitive bipolar cell synaptic output, which was strongest for local motion and dependent on the motion's origin. We characterized bipolar cell receptive fields and found that there are motion and non-motion sensitive bipolar cell types, the majority being motion sensitive. Next, we used these bipolar cell receptive fields along with connectomics to design biophysical models of downstream cells. The models and experiments demonstrated that bipolar cells pass motion-sensitive excitation to starburst amacrine cells through direction-specific signals mediated by bipolar cells' center-surround receptive field structure. As bipolar cells provide excitation to most amacrine and ganglion cells, their motion sensitivity may contribute to motion processing throughout the visual system.


2008 ◽  
Vol 100 (1) ◽  
pp. 304-316 ◽  
Author(s):  
Timm Schubert ◽  
Daniel Kerschensteiner ◽  
Erika D. Eggers ◽  
Thomas Misgeld ◽  
Martin Kerschensteiner ◽  
...  

Synaptic integration is modulated by inhibition onto the dendrites of postsynaptic cells. However, presynaptic inhibition at axonal terminals also plays a critical role in the regulation of neurotransmission. In contrast to the development of inhibitory synapses onto dendrites, GABAergic/glycinergic synaptogenesis onto axon terminals has not been widely studied. Because retinal bipolar cells receive subclass-specific patterns of GABAergic and glycinergic presynaptic inhibition, they are a good model for studying the development of inhibition at axon terminals. Here, using whole cell recording methods and transgenic mice in which subclasses of retinal bipolar cells are labeled, we determined the temporal sequence and patterning of functional GABAergic and glycinergic input onto the major subclasses of bipolar cells. We found that the maturation of GABAergic and glycinergic synapses onto the axons of rod bipolar cells (RBCs), on-cone bipolar cells (on-CBCs) and off-cone bipolar cells (off-CBCs) were temporally distinct: spontaneous chloride-mediated currents are present in RBCs earlier in development compared with on- and off-CBC, and RBCs receive GABAergic and glycinergic input simultaneously, whereas in off-CBCs, glycinergic transmission emerges before GABAergic transmission. Because on-CBCs show little inhibitory activity, GABAergic and glycinergic events could not be pharmacologically distinguished for these bipolar cells. The balance of GABAergic and glycinergic input that is unique to RBCs and off-CBCs is established shortly after the onset of synapse formation and precedes visual experience. Our data suggest that presynaptic modulation of glutamate transmission from bipolar cells matures rapidly and is differentially coordinated for GABAergic and glycinergic synapses onto distinct bipolar cell subclasses.


2019 ◽  
Vol 121 (4) ◽  
pp. 1232-1243 ◽  
Author(s):  
Reece E. Mazade ◽  
Michael D. Flood ◽  
Erika D. Eggers

During adaptation from dim to bright environments, changes in retinal signaling are mediated, in part, by dopamine. Dopamine is released with light and can modulate retinal receptive fields, neuronal coupling, inhibitory receptors, and rod pathway inhibition. However, it is unclear how dopamine affects inner retinal inhibition to cone bipolar cells, which relay visual information from photoreceptors to ganglion cells and are important signal processing sites. We tested the hypothesis that dopamine (D)1 receptor activation is sufficient to elicit light-adapted inhibitory changes. Local light-evoked inhibition and spontaneous activity were measured from OFF cone bipolar cells in dark-adapted mouse retinas while stimulating D1 receptors, which are located on bipolar, horizontal, and inhibitory amacrine cells. The D1 agonist SKF38393 reduced local inhibitory light-evoked response magnitude and increased response transience, which mimicked changes measured with light adaptation. D1-mediated reductions in local inhibition were more pronounced for glycinergic than GABAergic inputs, comparable with light adaptation. The effects of D1 receptors on light-evoked input were similar to the effects on spontaneous input. D1 receptor activation primarily decreased glycinergic spontaneous current frequency, similar to light adaptation, suggesting mainly a presynaptic amacrine cell site of action. These results expand the role of dopamine to include signal modulation of cone bipolar cell local inhibition. In this role, D1 receptor activation, acting primarily through glycinergic amacrine cells, may be an important mechanism for the light-adapted reduction in OFF bipolar cell inhibition since the actions are similar and dopamine is released during light adaptation. NEW & NOTEWORTHY Retinal adaptation to different luminance conditions requires the adjustment of local circuits for accurate signaling of visual scenes. Understanding mechanisms behind luminance adaptation at different retinal levels is important for understanding how the retina functions in a dynamic environment. In the mouse, we show that dopamine pathways reduce inner retinal inhibition similar to increased background luminance, suggesting the two are linked and highlighting a possible mechanism for light adaptation at an early retinal processing center.


1999 ◽  
Vol 16 (6) ◽  
pp. 1181-1189 ◽  
Author(s):  
STEPHEN C. MASSEY ◽  
STEPHEN L. MILLS

Electrical synapses or gap junctions occur between many retinal neurons. However, in most cases, the gap junctions have not been visualized directly. Instead, their presence has been inferred from tracer spread throughout the network of cells. Thus, tracer coupling is taken as a marker for the presence of gap junctions between coupled cells. AII amacrine cells are critical interneurons in the rod pathway of the mammalian retina. Rod bipolar cell output passes to AII amacrine cells, which in turn make conventional synapses with OFF cone bipolar cells and gap junctions with ON cone bipolar cells. Injections of biotinylated tracers into AII amacrine cells reveals coupling between the AII amacrine cell network and heterologous coupling with a variety of ON cone bipolar cells, including the calbindin-positive cone bipolar cell. To directly visualize gap junctions in this network, we prepared material for electron microscopy that was double labeled with antibodies to calretinin and calbindin to label AII amacrine cells and calbindin-positive cone bipolar cells, respectively. AII amacrine cells were postsynaptic to large vesicle-laden rod bipolar terminals, as previously reported. Gap junctions were identified between AII amacrine cells and calbindin-positive cone bipolar cell terminals identified by the presence of immunostaining and ribbon synapses. This represents direct confirmation of gap junctions between two different yet positively identified cells, which are tracer coupled, and provides additional evidence that tracer coupling with Neurobiotin indicates the presence of gap junctions. These results also definitively establish the presence of gap junctions between AII amacrine cells and calbindin bipolar cells which can therefore carry rod signals to the ON alpha ganglion cell.


2007 ◽  
Vol 98 (6) ◽  
pp. 3423-3435 ◽  
Author(s):  
Alyosha Molnar ◽  
Frank Werblin

Retinal bipolar cells can be divided into on and off types based on the polarity of their response to light. Bipolar activity is further shaped by inhibitory inputs, characterized here by the events that occur immediately after the onset of a light step: 1) in most off bipolar cells, excitatory current decreased, whereas inhibitory current increased. These currents reinforced each other, enhancing the light response. 2) In about half of the on cone bipolar cells, the excitatory current increased, whereas inhibitory current decreased, also reinforcing the light response. Both of these reinforcing interactions were mediated by glycinergic inhibition. 3) In the remaining on cone bipolar cells, excitation and inhibition both increased, but inhibition was delayed so that these cells responded transiently. 4) Finally, in rod bipolar cells, excitation and inhibition both increased so that inhibition suppressed excitation, reducing the light response at all time scales. The suppressive inhibition seen in on cone and rod bipolar cells was mediated by GABA. Thus morphologically diverse bipolar cells receive only four main types of inhibitory input, and the majority of “inhibitory” inputs actually serve to enhance excitation.


2003 ◽  
Vol 20 (1) ◽  
pp. 37-49 ◽  
Author(s):  
RUTH HEIDELBERGER ◽  
MENG M. WANG ◽  
DAVID M. SHERRY

Synaptotagmin I is the leading candidate for the calcium sensor that triggers exocytosis at conventional synapses. However, physiological characterization of the calcium sensor for phasic release at the ribbon-style synapses of the goldfish Mb1 bipolar cell demonstrates a lower than predicted affinity for calcium, suggesting that a modified or different sensor triggers exocytosis at this synapse. We examined synaptotagmin immunolabeling in goldfish retina using two different antibodies directed against synaptotagmin epitopes that specifically labeled the expected 65-kDa protein on western blots of goldfish and mouse retinal membranes. The first antiserum strongly labeled conventional synapses in the inner plexiform layer (IPL), but did not label the ribbon-style synapse-containing synaptic terminals of goldfish Mb1 bipolar cells or photoreceptors. The second antibody also specifically labeled the expected 65-kDa protein on western blots but did not label any synapses in the goldfish retina. A third synaptotagmin antibody that performed poorly on western blots selectively labeled goldfish photoreceptor terminals. These results suggest that synaptotagmin may exist in at least three distinct “forms” in goldfish retinal synapses. These forms, which are differentially localized to conventional synapses, bipolar cell, and photoreceptor terminals, may represent differences in isoform, posttranslational modifications, epitope availability, and protein-binding partners. Labeling with these antibodies in the salamander and mouse retina revealed species-specific differences, indicating that synaptotagmin epitopes can vary across species as well as among synapses.


Sign in / Sign up

Export Citation Format

Share Document