Color and luminance increment thresholds in poor readers

2008 ◽  
Vol 25 (3) ◽  
pp. 481-486 ◽  
Author(s):  
STEPHEN J. DAIN ◽  
RICHARD A. FLOYD ◽  
ROBERT T. ELLIOT

The hypotheses of a visual basis to reading disabilities in some children have centered around deficits in the visual processes displaying more transient reponses to stimuli although hyperactivity in the visual processes displaying sustained reponses to stimuli has also been proposed as a mechanism. In addition, there is clear evidence that colored lenses and/or colored overlays and/or colored backgrounds can influence performance in reading and/or may assist in providing comfortable vision for reading and, as a consequence, the ability to maintain reading for longer. As a consequence, it is surprising that the color vision of poor readers is relatively little studied. We assessed luminance increment thresholds and equi-luminous red-green and blue-yellow increment thresholds using a computer based test in central vision and at 10° nasally employing the paradigm pioneered by King-Smith. We examined 35 poor readers (based on the Neale Analysis of Reading) and compared their performance with 35 normal readers matched for age and IQ. Poor readers produced similar luminance contrast thresholds for both foveal and peripheral presentation compared with normals. Similarly, chromatic contrast discrimination for the red/green stimuli was the same in normal and poor readers. However, poor readers had significantly lower thresholds/higher sensitivity for the blue/yellow stimuli, for both foveal and peripheral presentation, compared with normal readers. This hypersensitivity in blue-yellow discrimination may point to why colored lenses and overlays are often found to be effective in assisting many poor readers.

2020 ◽  
Author(s):  
Cedric P. van den Berg ◽  
Michelle Hollenkamp ◽  
Laurie J. Mitchell ◽  
Erin J. Watson ◽  
Naomi F. Green ◽  
...  

AbstractAchromatic (luminance) vision is used by animals to perceive motion, pattern, space and texture. Luminance contrast sensitivity thresholds are often poorly characterised for individual species and are applied across a diverse range of perceptual contexts using over-simplified assumptions of an animal’s visual system. Such thresholds are often estimated using the Receptor Noise Limited model (RNL) using quantum catch values and estimated noise levels of photoreceptors. However, the suitability of the RNL model to describe luminance contrast perception remains poorly tested.Here, we investigated context-dependent luminance discrimination using triggerfish (Rhinecanthus aculeatus) presented with large achromatic stimuli (spots) against uniform achromatic backgrounds of varying absolute and relative contrasts. ‘Dark’ and ‘bright’ spots were presented against relatively dark and bright backgrounds. We found significant differences in luminance discrimination thresholds across treatments. When measured using Michelson contrast, thresholds for bright spots on a bright background were significantly higher than for other scenarios, and the lowest threshold was found when dark spots were presented on dark backgrounds. Thresholds expressed in Weber contrast revealed increased contrast sensitivity for stimuli darker than their backgrounds, which is consistent with the literature. The RNL model was unable to estimate threshold scaling across scenarios as predicted by the Weber-Fechner law, highlighting limitations in the current use of the RNL model to quantify luminance contrast perception. Our study confirms that luminance contrast discrimination thresholds are context-dependent and should therefore be interpreted with caution.


Perception ◽  
1996 ◽  
Vol 25 (1_suppl) ◽  
pp. 145-145 ◽  
Author(s):  
D R Simmons ◽  
F A A Kingdom

The level of binocularity possessed by mechanisms sensitive to chromatic contrast is still unclear. Recent studies of stereopsis and chromatic contrast have suggested that stereopsis is maintained at isoluminance, although the contrast sensitivity and disparity ranges of chromatic stereopsis mechanisms are reduced compared to luminance stereopsis mechanisms. Rose, Blake, and Halpern (1988 Investigative Ophthalmology and Visual Science29 283 – 290) hypothesised a link between binocular summation (ie the superiority of binocular detection over monocular detection) and stereopsis. Is this link maintained with heterochromatic isoluminant stimuli? To address this question, the binocular and monocular contrast thresholds for the detection of 0.5 cycle deg−1 Gabor patches were measured. The stimuli possessed different relative amounts of colour and luminance contrast ranging from isoluminance (red/green) to isochrominance (yellow/black) through intermediate values. It was found that, with these stimuli, binocular detection was well modelled by assuming independent mechanisms sensitive to chromatic contrast and luminance contrast. Furthermore, with isoluminant stimuli, levels of binocular summation were above those expected from probability summation between the eyes, thus providing evidence for binocular neural summation within chromatic detection mechanisms. Given that stereoscopic depth identification is impossible at contrast detection threshold with isoluminant heterochromatic stimuli, these results suggest that the link between stereopsis and levels of binocular neural summation may not be a particularly strong one. These results also provide clear evidence for the binocularity of chromatic detection mechanisms.


1995 ◽  
Vol 12 (1) ◽  
pp. 103-116 ◽  
Author(s):  
Pascal Girard ◽  
Maria Concetta Morrone

AbstractThis study investigates the receptive-field structure of mechanisms operating in human color vision, by recording visual evoked potentials (VEPs) to multiharmonic gratings modulated either in luminance or color (red-green). Varying the Fourier phase of the harmonics from 0 deg to 90 deg produced a family of stimulus profiles that varied from lines to edges. The stimuli were contrast reversed to elicit steady-state VEPS, and also randomly jittered (at a higher temporal frequency than the contrast reversal) to ensure that the evoked response resulted from the polarity reversal, rather than from local variation of luminance or color. Reliable VEPs were recorded from both luminance and chromatic stimuli at all phases, suggesting that the mechanisms sensitive to chromatic contrast and those sensitive to luminance contrast have both symmetric and asymmetric receptive fields. Contrast thresholds estimated by extrapolation of the contrast response curves were very similar to psychophysical thresholds for phase discrimination, suggesting that the VEP response is generated by mechanisms mediating phase discrimination. The results support the idea that human color mechanisms have receptive fields with a variety of spatial symmetries (including odd- and even-symmetric fields) and that these mechanisms may contribute to phase discrimination of chromatic stimuli in a similar way to what has been suggested for luminance vision.


2020 ◽  
Vol 223 (21) ◽  
pp. jeb232090
Author(s):  
Cedric P. van den Berg ◽  
Michelle Hollenkamp ◽  
Laurie J. Mitchell ◽  
Erin J. Watson ◽  
Naomi F. Green ◽  
...  

ABSTRACTAchromatic (luminance) vision is used by animals to perceive motion, pattern, space and texture. Luminance contrast sensitivity thresholds are often poorly characterised for individual species and are applied across a diverse range of perceptual contexts using over-simplified assumptions of an animal's visual system. Such thresholds are often estimated using the receptor noise limited model (RNL). However, the suitability of the RNL model to describe luminance contrast perception remains poorly tested. Here, we investigated context-dependent luminance discrimination using triggerfish (Rhinecanthus aculeatus) presented with large achromatic stimuli (spots) against uniform achromatic backgrounds of varying absolute and relative contrasts. ‘Dark’ and ‘bright’ spots were presented against relatively dark and bright backgrounds. We found significant differences in luminance discrimination thresholds across treatments. When measured using Michelson contrast, thresholds for bright spots on a bright background were significantly higher than for other scenarios, and the lowest threshold was found when dark spots were presented on dark backgrounds. Thresholds expressed in Weber contrast revealed lower thresholds for spots darker than their backgrounds, which is consistent with the literature. The RNL model was unable to estimate threshold scaling across scenarios as predicted by the Weber–Fechner law, highlighting limitations in the current use of the RNL model to quantify luminance contrast perception. Our study confirms that luminance contrast discrimination thresholds are context dependent and should therefore be interpreted with caution.


2013 ◽  
Vol 17 (6) ◽  
pp. 398-414 ◽  
Author(s):  
Riikka Heikkilä ◽  
Mikko Aro ◽  
Vesa Närhi ◽  
Jari Westerholm ◽  
Timo Ahonen

2011 ◽  
Vol 28 (3) ◽  
pp. 239-246 ◽  
Author(s):  
SOPHIE M. WUERGER ◽  
ALEXA RUPPERTSBERG ◽  
STEPHANIE MALEK ◽  
MARCO BERTAMINI ◽  
JASNA MARTINOVIC

AbstractGlobal motion integration mechanisms can utilize signals defined by purely chromatic information. Is global motion integration sensitive to the polarity of such color signals? To answer this question, we employed isoluminant random dot kinematograms (RDKs) that contain a single chromatic contrast polarity or two different polarities. Single-polarity RDKs consisted of local motion signals with either a positive or a negative S or L–M component, while in the different-polarity RDKs, half the dots had a positive S or L–M component, and the other half had a negative S or L–M component. In all RDKs, the polarity and the motion direction of the local signals were uncorrelated. Observers discriminated between 50% coherent motion and random motion, and contrast thresholds were obtained for 81% correct responses. Contrast thresholds were obtained for three different dot densities (50, 100, and 200 dots). We report two main findings: (1) dependence on dot density is similar for both contrast polarities (+S vs. −S, +LM vs. −LM) but slightly steeper for S in comparison to LM and (2) thresholds for different-polarity RDKs are significantly higher than for single-polarity RDKs, which is inconsistent with a polarity-blind integration mechanism. We conclude that early motion integration mechanisms are sensitive to the polarity of the local motion signals and do not automatically integrate information across different polarities.


2016 ◽  
Vol 283 (1831) ◽  
pp. 20160692 ◽  
Author(s):  
Alessandro Benedetto ◽  
Donatella Spinelli ◽  
M. Concetta Morrone

Recent evidence suggests that ongoing brain oscillations may be instrumental in binding and integrating multisensory signals. In this experiment, we investigated the temporal dynamics of visual–motor integration processes. We show that action modulates sensitivity to visual contrast discrimination in a rhythmic fashion at frequencies of about 5 Hz (in the theta range), for up to 1 s after execution of action. To understand the origin of the oscillations, we measured oscillations in contrast sensitivity at different levels of luminance, which is known to affect the endogenous brain rhythms, boosting the power of alpha-frequencies. We found that the frequency of oscillation in sensitivity increased at low luminance, probably reflecting the shift in mean endogenous brain rhythm towards higher frequencies. Importantly, both at high and at low luminance, contrast discrimination showed a rhythmic motor-induced suppression effect, with the suppression occurring earlier at low luminance. We suggest that oscillations play a key role in sensory–motor integration, and that the motor-induced suppression may reflect the first manifestation of a rhythmic oscillation.


Sign in / Sign up

Export Citation Format

Share Document